
chapter11.md 2/12/2020

1 / 13

11 TESTING YOUR CODE

Main Content
11.1 Testing a Function 11.2 Testing a Class 11.3 Summary

To learn about testing, we need code to test. Here’s a simple function that takes in a first and last name,
and returns a neatly formatted full name::

name_function.py
def get_formatted_name(first, last):
 """Generate a neatly formatted full name."""
 full_name = first + ' ' + last
 return full_name.title()

The function get_formatted_name() combines the first and last name with a space in between to
complete a full name, and then capitalizes and returns the full name. To check that
get_formatted_name() works, let’s make a program that uses this function. The program names.py lets
users enter a first and last name, and see a neatly formatted full name:

from name_function import get_formatted_name
print("Enter 'q' at any time to quit.")
while True:
 first = input("\nPlease give me a first name: ")
 if first == 'q':
 break
 last = input("Please give me a last name: ")
 if last == 'q':
 break

formatted_name = get_formatted_name(first, last)
print("\tNeatly formatted name: " + formatted_name + '.')

This program imports get_formatted_name() from name_function.py. The user can enter a series of first
and last names, and see the formatted full names that are generated:

Enter 'q' at any time to quit.

Please give me a first name: janis
Please give me a last name: joplin

file:///c%3A/Users/JJ/Desktop/Python%20Courses/chapter11/chapter11_tmp.html
file:///c%3A/Users/JJ/Desktop/Python%20Courses/chapter11/chapter11_tmp.html
file:///c%3A/Users/JJ/Desktop/Python%20Courses/chapter11/chapter11_tmp.html

chapter11.md 2/12/2020

2 / 13

 Neatly formatted name: Janis Joplin.
Please give me a first name: bob
Please give me a last name: dylan
 Neatly formatted name: Bob Dylan.
Please give me a first name: q

We can see that the names generated here are correct. But let’s say we want to modify get_formatted_name() so it can also

handle middle names.As we do so, we want to make sure we don’t break the way the function handles names that have

only a first and last name. We could test our codeby running names.py and entering a name like Janis Joplin every time we

modify get_formatted_name(), but that would become tedious. Fortunately, Python provides an efficient way to automate

the testing of a function’s output. If we automate the testing of get_formatted_name(), we can always be confident that the

function will work when given the kinds of names we’ve written tests for

11.1.1 Unit Tests and Test Cases
The module unittest from the Python standard library provides tools for testing your code.

A unit test verifies that one specific aspect of a function’s behavior is correct.
A test case is a collection of unit tests that together prove that a function behaves as it’s supposed to,
within the full range of situations you expect it to handle. A good test case considers all the possible
kinds of input a function could receive and includes tests to represent each of these situations.
A test case with full coverage includes a full range of unit tests covering all the possible ways you can
use a function. Achieving full coverage on a large project can be daunting. It’s often good enough to
write tests for your code’s critical behaviors and then aim for full coverage only if the project starts to
see widespread use.

11.1.2 A Passing Test
The syntax for setting up a test case takes some getting used to, but once you’ve set up the test case
it’s straightforward to add more unit tests for your functions. To write a test case for a function, import
the unittest module and the function you want to test. Then create a class that inherits from
unittest.TestCase, and write a series of methods to test different aspects of your function’s behavior.

Here’s a test case with one method that verifies that the function get_formatted_name() works correctly
when given a first and last name:

#test_name_function.py

 import unittest
 from name_function import get_formatted_name
❶ class NamesTestCase(unittest.TestCase):
 """ Tests for name_function.py"""
 def test_first_last_name(self):
 """ Do names like 'Janis Joplin' work? """
❷ formatted_name = get_formatted_name('janis', 'joplin')

chapter11.md 2/12/2020

3 / 13

❸ self.assertEqual(formatted_name, 'Janis Joplin')

 unittest.main()

First, we import unittest and the function we want to test, get_formatted_name(). At u we create a class
called NamesTestCase, which will contain a series of unit tests for get_formatted_name(). You can name
the class anything you want, but it’s best to call it something related to the function you’re about to
test and to use the word Test in the class name. This class must inherit from the class unittest.TestCase
so Python knows how to run the tests you write.

NamesTestCase contains a single method that tests one aspect of get_formatted_name(). We call this
method test_first_last_name() because we’re verifying that names with only a first and last name are
formatted correctly. Any method that starts with test_ will be run automatically when we run
test_name_function.py. Within this test method, we call the function we want to test and store a return
value that we’re interested in testing. In this example we call get_formatted_name() with the arguments
'janis' and 'joplin', and store the result in formatted_name ❷。

At❸,we use one of unittest’s most useful features: an assert method.Assert methods verify that a result
you received matches the result you expected to receive. In this case, because we know
get_formatted_name() is supposed to return a capitalized, properly spaced full name, we expect the
value in formatted_name to be Janis Joplin. To check if this is true, we use unittest’s assertEqual()
method and pass it formatted_name and 'Janis Joplin'. The line：self.assertEqual(formatted_name, 'Janis
Joplin') says, “Compare the value in formatted_name to the string 'Janis Joplin'. If they are equal as
expected, fine. But if they don’t match, let me know!”

The line unittest.main() tells Python to run the tests in this file. When we run test_name_function.py, we
get the following output:

.
--
Ran 1 test in 0.000s
OK

The dot on the first line of output tells us that a single test passed. The next line tells us that Python ran one
test, and it took less than 0.001 seconds to run. The final OK tells us that all unit tests in the test case passed.

This output indicates that the function get_formatted_name() will always work for names that have a first and
last name unless we modify the function. When we modify get_formatted_name(), we can run this test again. If
the test case passes, we know the function will still work for names like Janis Joplin.

11.1.3 A Failing Test

chapter11.md 2/12/2020

4 / 13

What does a failing test look like? Let’s modify get_formatted_name() so it can handle middle names, but

we’ll do so in a way that breaks the function for names with just a first and last name, like Janis Joplin.
Here’s a new version of get_formatted_name() that requires a middle name argument:

def get_formatted_name(first, middle, last):
 """ Generate a neatly formatted full name. """
 full_name = first + ' ' + middle + ' ' + last
 return full_name.title()

This version should work for people with middle names, but when we test it, we see that we’ve broken the
function for people with just a first and last name. This time, running the file test_name_function.py gives this
output:

run test_name_function.py

❶ E
==
❷ ERROR: test_first_last_name (__main__.NamesTestCase)
--
❸ Traceback (most recent call last):
 File "test_name_function.py", line 8, in test_first_last_name
 formatted_name = get_formatted_name('janis', 'joplin')
 TypeError: get_formatted_name() missing 1 required positional argument: 'last'
--
❹ Ran 1 test in 0.000s
❺ FAILED (errors=1)

There’s a lot of information here because there’s a lot you might need to know when a test fails. The first item in the output is a

single E u, which tells us one unit test in the test case resulted in an error. Next, we see that test_first_last_name() in NamesTestCase

caused an error v. Knowing which test failed is critical when your test case contains many unit tests. At we see a standard traceback,

which reports that the function call get_formatted_name('janis', 'joplin') no longer works because it’s missing a required positional

argument.

❶ E
==
❷ ERROR: test_first_last_name (__main__.NamesTestCase)
--
❸ Traceback (most recent call last):
 File "test_name_function.py", line 8, in test_first_last_name
 formatted_name = get_formatted_name('janis', 'joplin')
 TypeError: get_formatted_name() missing 1 required positional argument: 'last'
--
❹ Ran 1 test in 0.000s
❺ FAILED (errors=1)

chapter11.md 2/12/2020

5 / 13

We also see that one unit test was run x. Finally, we see an additional message that the overall test case failed and that one error

occurred when running the test case y. This information appears at the end of the output so you see it right away; you don’t want to

scroll up through a long output listing to find out how many tests failed

11.1.4 Responding to a Failed Test

What do you do when a test fails? Assuming you’re checking the right conditions, a passing test means the
function is behaving correctly and a failing test means there’s an error in the new code you wrote. So when a
test fails, don’t change the test. Instead, fix the code that caused the test to fail.Examine the changes you just
made to the function, and figure out how those changes broke the desired behavior.

In this case get_formatted_name() used to require only two parameters: a first name and a last name. Now
it requires a first name, middle name, and last name. The addition of that mandatory middle name parameter
broke the desired behavior of get_formatted_name(). The best option here is to make the middle name
optional. Once we do, our test for names like Janis Joplin should pass again, and we should be able to accept
middle names as well. Let’s modify get_formatted_name() so middle names are optional and then run the
test case again. If it passes, we’ll move on to making sure the function handles middle names properly.

 To make middle names optional, we move the parameter middle to the end of the parameter list in the
function definition and give it an empty default value. We also add an if test that builds the full name
properly,depending on whether or not a middle name is provided:

def get_formatted_name(first, last, middle=''):
""" Generate a neatly formatted full name """
 if middle:
 full_name = first + ' ' + middle + ' ' + last
 else:
 full_name = first + ' ' + last
 return full_name.title()

 In this new version of get_formatted_name(), the middle name is optional.If a middle name is passed to
the function (if middle:), the full name will contain a first, middle, and last name. Otherwise, the full name will
consist of just a first and last name.

 Now the function should work for both kinds of names. To find out if the function still works for names
like Janis Joplin, let’s run test_name_function.py again:

.
--
Ran 1 test in 0.000s
OK

chapter11.md 2/12/2020

6 / 13

The test case passes now. This is ideal; it means the function works for names like Janis Joplin again
without us having to test the function manually. Fixing our function was easy because the failed test helped us
identify the new code that broke existing behavior.

11.1.5 Adding New Tests

 Now that we know get_formatted_name() works for simple names again, let’s write a second test for people who include a

middle name. We do this by adding another method to the class NamesTestCase:

 import unittest
 from name_function import get_formatted_name

 class NamesTestCase(unittest.TestCase):
 """ Test for name_function.py """

 def test_first_last_name(self):
 """ Do names like Janis Joplin work? """
 formatted_name = get_formatted_name('janis', 'joplin')
 self.assertEqual(formatted_name, 'Janis Joplin')

 def test_first_last_middle_name(self):
 """ Do names like Wolfgang Amadeus Mozart work? """
❶ formatted_name = get_formatted_name(
 'wolfgang', 'mozart', 'amadeus')
 self.assertEqual(formatted_name, 'Wolfgang Amadeus Mozart')

unittest.main()

 We name this new method test_first_last_middle_name(). The method name must start with test_
so the method runs automatically when we run test_name_function.py. We name the method to make it
clear which behavior of get_formatted_name() we’re testing. As a result, if the test fails, we know right away
what kinds of names are affected. It’s fine to have long method names in your TestCase classes. They need to
be descriptive so you can make sense of the output when your tests fail, and because Python calls them
automatically, you’ll never have to write code that calls these methods

 To test the function, we call get_formatted_name() with a first, last, and middle name u, and then we
use assertEqual() to check that the returned full name matches the full name (first, middle, and last) that
we expect. When we run test_name_function.py again, both tests pass:

..
--
Ran 2 tests in 0.000s
OK

chapter11.md 2/12/2020

7 / 13

Great! We now know that the function still works for names like Janis Joplin, and we can be
confident that it will work for names like Wolfgang Amadeus Mozart as well.

动⼿试⼀试 11-1 City, Country: Write a function that accepts two parameters: a city name and a country
name The function should return a single string of the form City, Country, such as Santiago, Chile Store the
function in a module called city_functions.py

Create a file called test_cities.py that tests the function you just wrote (remember that you need to
import unittest and the function you want to test) Write a method called test_city_country() to verify
that calling your function with values such as 'santiago' and 'chile' results in the correct string Run
test_cities.py, and make sure test_city_country() passes

动⼿试⼀试

11-2 Modify your function so it requires a third parameter,population It should now return a single string
of the form City, Country –population xxx, such as Santiago, Chile – population 5000000 Run test_cities.py
again Make sure test_city_country() fails this time.

1.Modify the function so the population parameter is optional Run test_cities.py again, and make sure
test_city_country() passes again.

2.Write a second test called test_city_country_population() that verifies you can call your function with
the values 'santiago', 'chile', and 'population=5000000' Run test_cities.py again, and make sure this new
test passes.

11.2 testing a Class

In the first part of this chapter, you wrote tests for a single function. Now you’ll write tests for a class. You’ll
use classes in many of your own programs, so it’s helpful to be able to prove that your classes work correctly.
If you have passing tests for a class you’re working on, you can be confident that improvements you make to
the class won’t accidentally break its current behavior.

11.2.1 A Variety of Assert Methods

Python provides a number of assert methods in the unittest.TestCase class.As mentioned earlier, assert
methods test whether a condition you believe is true at a specific point in your code is indeed true. If the
condition is true as expected, your assumption about how that part of your program behaves is confirmed;
you can be confident that no errors exist. If the condition you assume is true is actually not true, Python raises
an exception.

Table 11-1 describes six commonly used assert methods. With these methods you can verify that returned
values equal or don’t equal expected values, that values are True or False, and that values are in or not in a
given list. You can use these methods only in a class that inherits from unittest.TestCase, so let’s look at how
we can use one of these methods in the context of testing an actual class.

chapter11.md 2/12/2020

8 / 13

表 11-1 unittest Module 中的断⾔⽅法

Method Use

assertEqual(a, b) Verify that a == b

assertNotEqual(a, b) Verify that a != b

assertTrue(x) Verify that x 为True

assertFalse(x) Verify that x 为False

assertIn(item , list) Verify that item 在 list 中

assertNotIn(item , list) Verify that item 不在 list 中

11.2.2 A Class to Test

Testing a class is similar to testing a function—much of your work involves testing the behavior of the methods in the class. But

there are a few differences, so let’s write a class to test. Consider a class that helps administer anonymous surveys:

class AnonymousSurvey():
 """ Collect anonymous answers to a survey question. """
❶ def __init__(self, question):
 """ Store a question, and prepare to store responses. """
 self.question = question
 self.responses = []
❷ def show_question(self):
 """ Show the survey question. """
 print(question)
❸ def store_response(self, new_response):
 """ Store a single response to the survey. """
 self.responses.append(new_response)
❹ def show_results(self):
 """ Show all the responses that have been given. """
 print("Survey results:")
 for response in responses:
 print('- ' + response)

This class starts with a survey question that you provide ❶and
includes an empty list to store responses. The class has methods to print
the survey question ❷,add a new response to the response list❸, and
print all the responses stored in the list ❹. To create an instance from
this class, all you,have to provide is a question. Once you have an
instance representing a particular survey, you display the survey question
with show_question(), store a response using store_response(), and
show results with show_results().

chapter11.md 2/12/2020

9 / 13

To show that the AnonymousSurvey class works, let’s write a program that uses the class:

from survey import AnonymousSurvey
Define a question, and make a survey.
question = "What language did you first learn to speak?"
my_survey = AnonymousSurvey(question)
Show the question, and store responses to the question.
my_survey.show_question()
my_survey.show_question()
print("Enter 'q' at any time to quit.\n")
while True:
 response = input("Language: ")
 if response == 'q':
 break
 my_survey.store_response(response)
Show the survey results.
print("\nThank you to everyone who participated in the survey!")
my_survey.show_results()

This program defines a question ("What language did you first learn to speak?") and creates an AnonymousSurvey object with

that question. The program calls show_question() to display the question and then prompts for responses. Each response is stored

as it is received. When all responses have been entered (the user inputs q to quit), show_results() prints the survey results:

What language did you first learn to speak?
Enter 'q' at any time to quit.
Language:English
Language:Spanish
Language:English
Language:Mandarin
Language:q

Thank you to everyone who participated in the survey!
Survey results:
- English
- Spanish
- English
- Mandarin

AnonymousSurvey class works for a simple anonymous survey. But let’s say we want to improve
AnonymousSurvey and the module it’s in, survey. We could allow each user to enter more than one response.
We could write a method to list only unique responses and to report how many times each response was
given.We could write another class to manage nonanonymous surveys.

Implementing such changes would risk affecting the current behavior of the class AnonymousSurvey. For
example, it’s possible that while trying to allow each user to enter multiple responses, we could accidentally

chapter11.md 2/12/2020

10 / 13

change how single responses are handled. To ensure we don’t break existing behavior as we develop this
module, we can write tests for the class.

11.2.3 Testing the AnonymousSurvey Class

 Let’s write a test that verifies one aspect of the way AnonymousSurvey behaves.We’ll write a test to verify
that a single response to the survey question is stored properly. We’ll use the assertIn() method to verify that
the response is in the list of responses after it’s been stored:

 import unittest
 from survey import AnonymousSurvey
❶ class TestAnonmyousSurvey(unittest.TestCase):
 """ Tests for the class AnonymousSurvey """

❷ def test_store_single_response(self):
 """ Test that a single response is stored properly. """
 question = "What language did you first learn to speak?"
❸ my_survey = AnonymousSurvey(question)
 my_survey.store_response('English')

❹ self.assertIn('English', my_survey.responses)
 unittest.main()

We start by importing the unittest module and the class we want to test, AnonymousSurvey. We call our
test case TestAnonymousSurvey, which again inherits from unittest.TestCase ❶.The first test method will
verify that when we store a response to the survey question, the response ends up in the survey’s list of
responses. A good descriptive name for this method is test_store_single_response() ❷.If this test fails, we’ll
know from the method name shown in the output of the failing test that there was a problem storing a single
response to the survey.

To test the behavior of a class, we need to make an instance of the class. At❸ we create an instance called
my_survey with the question "What language did you first learn to speak?" We store a single response,
English,using the store_response() method. Then we verify that the response was stored correctly by asserting
that English is in the list my_survey.responses ❹. When we run test_survey.py, the test passes:

.
--
Ran 1 test in 0.001s
OK

This is good, but a survey is useful only if it generates more than one response. Let’s verify that three
responses can be stored correctly.

chapter11.md 2/12/2020

11 / 13

To do this, we add another method to TestAnonymousSurvey

import unittest
from survey import AnonymousSurvey

class TestAnonymousSurvey(unittest.TestCase):
 """Tests for the class AnonymousSurvey"""

 def test_store_single_response(self):
 """ Test that a single response is stored properly. """
 --snip--

 def test_store_three_responses(self):
 """ Test that three individual responses are stored properly. """
 question = "What language did you first learn to speak?"
 my_survey = AnonymousSurvey(question)
❶ responses = ['English', 'Spanish', 'Mandarin']
 for response in responses:
 my_survey.store_response(response)

❷ for response in responses:
 self.assertIn(response, my_survey.responses)
 unittest.main()

 We call the new method test_store_three_responses(). We create a survey object just like we did in
test_store_single_response(). We define a list containing three different responses ❶,and then we call
store_response() for each of these responses. Once the responses have been stored, we write another loop
and assert that each response is now in my_survey.responses❷.

When we run test_survey.py again, both tests (for a single response and for three responses) pass:

..
--
Ran 2 tests in 0.000s
OK

This works perfectly. However, these tests are a bit repetitive, so we’ll use another feature of unittest to
make them more efficient.

11.2.4 The setUp() Method

 In test_survey.py we created a new instance of AnonymousSurvey in each test method, and we created
new responses in each method. The unittest.TestCase class has a setUp() method that allows you to create
these objects once and then use them in each of your test methods. When you include a setUp() method in

chapter11.md 2/12/2020

12 / 13

a TestCase class, Python runs the setUp() method before running each method starting with test_. Any
objects created in the setUp() method are then available in each test method you write.

Let’s use setUp() to create a survey instance and a set of responses that can be used in test_store_single_response() and

test_store_three_responses():

 import unittest
 from survey import AnonymousSurvey

 class TestAnonymousSurvey(unittest.TestCase):
 """ Tests for the class AnonymousSurvey. """

 def setUp(self):
 """
 Create a survey and a set of responses for use in all test methods.
 """
 question = "What language did you first learn to speak?"
❶ self.my_survey = AnonymousSurvey(question)
❷ self.responses = ['English', 'Spanish', 'Mandarin']

 def test_store_single_response(self):
 """ Test that a single response is stored properly. """
 self.my_survey.store_response(self.responses[0])
 self.assertIn(self.responses[0], self.my_survey.responses)
 def test_store_three_responses(self):
 """ Test that three individual responses are stored properly. """
 for response in self.responses:
 self.my_survey.store_response(response)
 for response in self.responses:
 self.assertIn(response, self.my_survey.responses)
 unittest.main()

 The method setUp() does two things: it creates a survey instance u,and it creates a list of responses v.
Each of these is prefixed by self, so they can be used anywhere in the class. This makes the two test methods
simpler, because neither one has to make a survey instance or a response.The method
test_store_single_response() verifies that the first response in self.responses—self.responses[0]—can be
stored correctly, and test_store_single_response() verifies that all three responses in self.responses can
be stored correctly.

 When we run test_survey.py again, both tests still pass. These tests would be particularly useful when
trying to expand AnonymousSurvey to handle multiple responses for each person. After modifying the code
to accept multiple responses, you could run these tests and make sure you haven’t affected the ability to store
a single response or a series of individual responses.

 When you’re testing your own classes, the setUp() method can make your test methods easier to write.
You make one set of instances and attributes in setUp() and then use these instances in all your test methods.

chapter11.md 2/12/2020

13 / 13

This is much easier than making a new set of instances and attributes in each test method.

NOTE When a test case is running, Python prints one character for each unit test as it is completed. A
passing test prints a dot, a test that results in an error prints an E, and a test that results in a failed
assertion prints an F. This is why you’ll see a different number of dots and characters on the first line of
output when you run your test cases.If a test case takes a long time to run because it contains many
unit tests, you can watch these results to get a sense of how many tests are passing

动⼿试⼀试 11-3 Employee: Write a class called Employee The __init__() method should take in a first
name, a last name, and an annual salary, and store each of these as attributes Write a method called
give_raise() that adds $5000 to the annual salary by default but also accepts a different raise amount

Write a test case for Employee Write two test methods, test_give_default_raise() and
test_give_custom_raise() Use the setUp() method so you don’t have to create a new employee instance
in each test method Run your test case, and make sure both tests pass

11.3 ⼩结

In this chapter you learned to write tests for functions and classes using tools in the unittest module. You
learned to write a class that inherits from unittest.TestCase, and you learned to write test methods that verify
specific behaviors your functions and classes should exhibit. You learned to use the setUp() method to
efficiently create instances and attributes from your classes that can be used in all the test methods for a class.

Testing is an important topic that many beginners don’t learn. You don’t have to write tests for all the
simple projects you try as a beginner. But as soon as you start to work on projects that involve significant
development effort, you should test the critical behaviors of your functions and classes. You’ll be more
confident that new work on your project won’t break the parts that work, and this will give you the freedom to
make improvements to your code. If you accidentally break existing functionality, you’ll know right away, so
you can still fix the problem easily. Responding to a failed test that you ran is much easier than responding to
a bug report from an unhappy user

Other programmers respect your projects more if you include some initial tests. They’ll feel more
comfortable experimenting with your code and be more willing to work with you on projects. If you want to
contribute to a project that other programmers are working on, you’ll be expected to show that your code
passes existing tests and you’ll usually be expected to write tests for new behavior you introduce to the
project.

Play around with tests to become familiar with the process of testing your code. Write tests for the most
critical behaviors of your functions and classes, but don’t aim for full coverage in early projects unless you
have a specific reason to do so

