
Chapter 5 If Statements
5.1 A Simple Example

5.2 Conditional Tests
5.3 If Statements
5.4 Using if statements with lists
5.5 Styling your if statements

5.6 Summary

A Simple Example
Imagine you have a list of cars and you want to print out the name
of each car. Car names are proper names, so the names of most
cars should be printed in title case. However, the value 'bmw'
should be printed in all uppercase.

cars.py

cars = ['audi', 'bmw', 'subaru', 'toyota']
❶
for car in cars:
if car == 'bmw':
print(car.upper())
else:
print(car.title())

The loop in this example first checks if the current value of car is
'bmw' ❶.If it is, the value is printed in uppercase. If the value of
car is anything other than 'bmw' , it’s printed in title case:

The above code loops through a list of car names and looks
for the value 'bmw' . Whenever the value is 'bmw' , it’s printed
in uppercase instead of title case:

Audi
BMW
Subaru
Toyota

5.2 Conditional Tests
Python uses the values True and False to decide whether the code
in an if statement should be executed.

5.2.1 Checking for Equality

Most conditional tests compare the current value of a variable to a
specific value of interest. The simplest conditional test checks
whether the value of a variable is equal to the value of interest:

❶>>> car = 'bmw'
❷>>> car == 'bmw'

True

The line at ❶ sets the value of car to 'bmw' using a single
equal sign,as you’ve seen many times already.
The line at ❷ checks whether the value of car is 'bmw' using a
double equal sign ﴾ == ﴿.This equality operator returns True if
the values on the left and right side of the operator match,
and False if they don’t match.

5.2.2 Ignoring Case When Checking for Equality

Testing for equality is case sensitive in Python. For example, two
values with different capitalization are not considered equal:

>>> car = 'Audi'
>>> car == 'audi'
False

If case matters, this behavior is advantageous. But if case doesn’t
matter and instead you just want to test the value of a variable, you
can convert the variable’s value to lowercase before doing the
comparison:

>>> car = 'Audi'
>>> car.lower() == 'audi'
True

This test would return True no matter how the value 'Audi' is
formatted because the test is now case insensitive. The lower﴾﴿
function doesn’t change the value that was originally stored in car ,
so you can do this kind of comparison without affecting the original
variable:

❶>>> car = 'Audi'
❷>>> car.lower() == 'audi'
True
❸ >>> car
'Audi'

At ❶ we store the capitalized string 'Audi' in the variable car .
At ❷ we convert the value of car to lowercase and compare
the lowercase value to the string 'audi' . The two strings
match, so Python returns True . At ❸ we can see that the
value stored in car has not been affected by the conditional
test.

5.2.3 Checking for Inequality

When you want to determine whether two values are not equal,
you can combine an exclamation point and an equal sign ﴾ != ﴿. The
exclamation point represents not, as it does in many programming
languages.

Let’s use another if statement to examine how to use the inequality
operator.

requested_topping = 'mushrooms'
❶if requested_topping != 'anchovies':
 print("Hold the anchovies!")

The line at ❶ compares the value of requested_topping to
the value 'anchovies' . If these two values do not match,
Python returns True and executes the code following the if
statement. If the two values match, Python returns False and
does not run the code following the if statement.

Because the value of requested_topping is not 'anchovies' , the
print statement is executed:

Hold the anchovies!

Most of the conditional expressions you write will test for
equality, but sometimes you’ll find it more efficient to test for
inequality.

5.2.4 Numerical Comparisons

Testing numerical values is pretty straightforward. For example, the
following code checks whether a person is 18 years old:

>>> age = 18
>>> age == 18
True

You can also test to see if two numbers are not equal. For example,
the following code prints a message if the given answer is not
correct:

answer = 17
❶if answer != 42:
print("That is not the correct answer. Please try again!")

The conditional test at ❶ passes, because the value of answer
﴾ 17 ﴿ is not equal to 42 . Because the test passes, the indented
code block is executed:

That is not the correct answer. Please try again!

You can include various mathematical comparisons in your
conditional statements as well, such as less than, less than or equal
to, greater than, and greater than or equal to:

>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False

Each mathematical comparison can be used as part of an if
statement,which can help you detect the exact conditions of
interest.

5.2.5 Checking Multiple Conditions

1.Using and to Check Multiple Conditions:
If each test passes, the over all expression evaluates to True. others,
the expression evaluates to False.
For example, you can check whether two people are both over 21
using the following test:

❶>>> age_0 = 22
>>> age_1 = 18
❷>>> age_0 >= 21 and age_1 >= 21
False
❸ >>> age_1 = 22
>>> age_0 >= 21 and age_1 >= 21
True

At ❶ we define two ages, age_0 and age_1 . At ❷ we check
whether both ages are 21 or older. the overall conditional
expression evaluates to False . At ❸ we change age_1 to 22.
so both individual tests pass,causing the overall conditional
expression to evaluate as True

To improve readability, you can use parentheses around the
individual
tests, but they are not required. If you use parentheses, your test
would look
like this:

(age_0 >= 21) and (age_1 >= 21)

2. Using or to Check Multiple Conditions

The keyword or allows you to check multiple conditions as well, but
it passes when either or both of the individual tests pass.

❶>>> age_0 = 22
>>> age_1 = 18
❷>>> age_0 >= 21 or age_1 >= 21
True
❸ >>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False

We start with two age variables again at ❶. Because the test
for age_0 at ❷ passes, the overall expression evaluates to
True . We then lower age_0 to 18. In the test at ❸, both tests
now fail and the overall expression evaluates to False .

5.2.6 Checking Whether a Value Is in a List

Sometimes it’s important to check whether a list contains a certain
value before taking an action. For example, you might want to
check whether a new username already exists in a list of current
usernames before completing someone’s registration on a website.
To find out whether a particular value is already in a list, use the
key‐word in .

>>> requested_toppings = ['mushrooms', 'onions', 'pineapple']
❶>>> 'mushrooms' in requested_toppings
True
❷ >>> 'pepperoni' in requested_toppings
False

We’ll make a list of toppings a customer has requested for a
pizza and then check whether certain toppings are in the list.

At ❶ and ❷, the keyword in tells Python to check for the
existence of 'mushrooms' and 'pepperoni' in the list
requested_toppings . This technique is quite powerful because
you can create a list of essential values, and then easily check
whether the value you’re testing matches one of the values in
the list.

5.2.7 Checking Whether a Value Is Not in a List

Other times, it’s important to know if a value does not appear in a
list. You can use the keyword not in this situation. For example,
consider a list of users who are banned from commenting in a
forum.

banned_users = ['andrew', 'carolina', 'david']
user = 'marie'
❶
if user not in banned_users:
print(user.title() + ", you can post a response if you wish.")

The line at ❶ reads quite clearly. If the value of user is not in
the list banned_users , Python returns True and executes the
indented line.

The user 'marie' is not in the list banned_users , so she sees a
message inviting her to post a response:

Marie, you can post a response if you wish.

5.2.8 Boolean Expressions

As you learn more about programming, you’ll hear the term
Boolean expression at some point. A Boolean expression is just
another name for a conditional test. A Boolean value is either True
or False ,just like the value of a conditional expression after it has
been evaluated.
Boolean values are often used to keep track of certain conditions,
such as whether a game is running or whether a user can edit
certain content on a website:

game_active = True
can_edit = False

Boolean values provide an efficient way to track the state of a
program or a particular condition that is important in your
program.

Try It yourself

5‐1 Conditional Tests

Write a series of conditional tests . Print a statement describing
each test and your prediction for the results of each test . Your code
should look something like this:

car = 'subaru'
print("Is car == 'subaru'? I predict True.")
print(car == 'subaru')

print("\nIs car == 'audi'? I predict False.")
print(car == 'audi')

Look closely at your results, and make sure you understand
why each line evaluates to True or False .
Create at least 10 tests . Have at least 5 tests evaluate to True
and another 5 tests evaluate to False

5‐2 More Conditional Tests

You don’t have to limit the number of tests you create to 10 . If you
want to try more comparisons, write more tests and add them to
conditional_tests.py . Have at least one True and one False result for
each of the following:

1.Tests for equality and inequality with strings.
2.Tests using the lower﴾﴿ function.
3.Numerical tests involving equality and inequality, greater
than and less than, greater than or equal to, and less than or
equal to.
4.Tests using the and keyword and the or keyword.
5.Test whether an item is in a list.
6.Test whether an item is not in a list.

5.3 if statements

5.3.1 Simple if Statements

The simplest kind of if statement has one test and one action:

if conditional_test:
 do something

You can put any conditional test in the first line and just about
any action in the indented block following the test. If the
conditional test evaluates to True , Python executes the code
following the if statement. If the test evaluates to False ,
Python ignores the code following the if statement.

Let’s say we have a variable representing a person’s age, and we
want to know if that person is old enough to vote. The following
code tests whether the person can vote:

age = 19
❶if age >= 18:
❷ print("You are old enough to vote!")

At ❶ Python checks to see whether the value in age is greater
than or equal to 18. It is, so Python executes the indented
print statement at ❷:

You are old enough to vote!

Indentation plays the same role in if statements as it did in for
loops.All indented lines after an if statement will be executed if the
test passes.

You can have as many lines of code as you want in the block
following the if statement. Let’s add another line of output if the
person is old enough to vote, asking if the individual has registered
to vote yet:

age = 19
if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")

The conditional test passes, and both print statements are
indented, so both lines are printed:

You are old enough to vote!
Have you registered to vote yet?

If the value of age is less than 18, this program would produce
nooutput.

5.3.2 if‐else Statements

An if ‐ else block is similar to a simple if statement, but the else
statement allows you to define an action or set of actions that are
executed when the conditional test fails.
We’ll display the same message we had previously if the person is
old enough to vote, but this time we’ll add a message for anyone
who is not old enough to vote:

age = 17
❶if age >= 18:
 print("You are old enough to vote!")
 print("Have you registered to vote yet?")
❷else:
 print("Sorry, you are too young to vote.")
 print("Please register to vote as soon as
 ‐‐‐‐you turn 18!")

If the conditional test at ❶ passes, the first block of indented
print statements is executed. If the test evaluates to False , the
else block at ❷ is executed.

Because age is less than 18 this time, the conditional test fails and
the code in the else block is executed:

Sorry, you are too young to vote.
Please register to vote as soon as you turn 18!

This code works because it has only two possible situations to
evaluate:a person is either old enough to vote or not old
enough to vote. The if ‐ else structure works well in situations
in which you want Python to always execute one of two
possible actions. In a simple if‐else chain like this, one of the
two actions will always be executed.

5.3.3 The if‐elif‐else Chain

Often, you’ll need to test more than two possible situations, and to
evaluate these you can use Python’s if ‐ elif ‐ else syntax. Python
executes only one block in an if ‐ elif ‐ else chain. It runs each
conditional test in order until one passes. When a test passes, the
code following that test is executed and Python skips the rest of the
tests.
Many real‐world situations involve more than two possible
conditions.For example, consider an amusement park that charges
different rates for different age groups:
﴾a﴿ Admission for anyone under age 4 is free.
﴾b﴿ Admission for anyone between the ages of 4 and 18 is $5.
﴾c﴿ Admission for anyone age 18 or older is $10.
How can we use an if statement to determine a person’s admission
rate?The following code tests for the age group of a person and
then prints an admission price message:

age = 12
❶if age < 4:
print("Your admission cost is $0.")
❷elif age < 18:
print("Your admission cost is $5.")
❸ else:
print("Your admission cost is $10.")

The if test at ❶ tests whether a person is under 4 years old. If
the test passes, an appropriate message is printed and Python
skips the rest of the tests.
The elif line at ❷ is really another if test, which runs only if
the previous test failed. At this point in the chain, we know the
person is at least 4 years old because the first test failed. If the
person is less than 18, an appropriate message is printed and
Python skips the else block.
If both the if and elif tests fail, Python runs the code in the else
block at ❸.

In this example the test at u evaluates to False , so its code block is
not executed. However, the second test evaluates to True ﴾12 is less
than 18﴿ so its code is executed. The output is one sentence,
informing the user of the admission cost:

Your admission cost is $5.

Any age greater than 17 would cause the first two tests to fail.
In these situations, the else block would be executed and the
admission price would be $10.

Rather than printing the admission price within the if ‐ elif ‐ else
block,it would be more concise to set just the price inside the if ‐
elif ‐ else chain and then have a simple print statement that runs
after the chain has been evaluated:

age = 12

if age < 4:
❶ price = 0
 elif age < 18:
❷ price = 5
else:
❸ price = 10

❹ print("Your admission cost is $" + str(price) + ".")

The lines at ❶, ❷, and ❸ set the value of price according to
the person’s age, as in the previous example. After the price is
set by the if ‐ elif ‐ else chain,a separate unindented print
statement ❹ uses this value to display a message reporting
the person’s admission price.

This code produces the same output as the previous example, but
the purpose of the if ‐ elif ‐ else chain is narrower. Instead of
determining a price and displaying a message, it simply determines
the admission price.In addition to being more efficient, this revised
code is easier to modify than the original approach. To change the
text of the output message, you would need to change only one
print statement rather than three separate print statements.

http://price.in/

5.3.5 Omitting the else Block

Python does not require an else block at the end of an if ‐ elif chain.
Sometimes an else block is useful; sometimes it is clearer to use an
additional elif statement that catches the specific condition of
interest:

age = 12
if age < 4:
price = 0
elif age < 18:
price = 5
elif age < 65:
price = 10
❶ elif age >= 65:
price = 5
print("Your admission cost is $" + str(price) + ".")

The extra elif block at ❶ assigns a price of $5 when the
person is 65 or older, which is a bit clearer than the general
else block. With this change,every block of code must pass a
specific test in order to be executed.

5.3.6 Testing Multiple Conditions

The if ‐ elif ‐ else chain is powerful, but it’s only appropriate to use
when you just need one test to pass. As soon as Python finds one
test that passes, it skips the rest of the tests.
Let’s reconsider the pizzeria example. If someone requests a two‐
topping pizza, you’ll need to be sure to include both toppings on
their pizza:

❶ requested_toppings = ['mushrooms', 'extra cheese']
❷ if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")
❸ if 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")
❹ if 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")
 print("\nFinished making your pizza!")

We start at ❶ with a list containing the requested toppings. The if
statement at v checks to see whether the person requested
mushrooms on their pizza. If so, a message is printed confirming
that topping. The test for pepperoni at w is another simple if
statement, not an elif or else statement, so this test is run
regardless of whether the previous test passed or not. The code at x
checks whether extra cheese was requested regardless of the
results from the first two tests. These three independent tests are
executed every time this program is run.

Adding mushrooms.
Adding extra cheese.
Finished making your pizza!

This code would not work properly if we used an if ‐ elif ‐ else
block,because the code would stop running after only one test
passes. Here’s what that would look like:

requested_toppings = ['mushrooms', 'extra cheese']
if 'mushrooms' in requested_toppings:
 print("Adding mushrooms.")
elif 'pepperoni' in requested_toppings:
 print("Adding pepperoni.")
elif 'extra cheese' in requested_toppings:
 print("Adding extra cheese.")
 print("\nFinished making your pizza!")

The test for 'mushrooms' is the first test to pass, so mushrooms are
added to the pizza. However, the values 'extra cheese' and
'pepperoni' are never checked, because Python doesn’t run any
tests beyond the first test that passes in an if‐elif‐else chain. The
customer’s first topping will be added, but all of their other
toppings will be missed:

Adding mushrooms.
Finished making your pizza!

In summary, if you want only one block of code to run, use an
if ‐ elif ‐else chain. If more than one block of code needs to
run, use a series of independent if statements.

Try It yourself

5‐3 Alien Colors #1: Imagine an alien was just shot down in a game
. Create a variable called alien_color and assign it a value of 'green' ,
'yellow' , or 'red' .

Write an if statement to test whether the alien’s color is green .
If it is, print a message that the player just earned 5 points .

Write one version of this program that passes the if test and
another that fails . ﴾The version that fails will have no output .﴿

5‐4 Alien Colors #2: Choose a color for an alien as you did in
Exercise 5‐3, and write an if ‐ else chain .

If the alien’s color is green, print a statement that the player
just earned 5 points for shooting the alien .
If the alien’s color isn’t green, print a statement that the player
just earned 10 points .
Write one version of this program that runs the if block and
another that runs the else block .

5‐5 Alien Colors #3: Turn your if ‐ else chain from Exercise 5‐4 into
an if ‐elif ‐else chain .

If the alien is green, print a message that the player earned 5
points .
If the alien is yellow, print a message that the player earned 10
points .

If the alien is red, print a message that the player earned 15
points .
Write three versions of this program, making sure each
message is printed for the appropriate color alien .

5‐6 Stages of Life: Write an if ‐ elif ‐ else chain that determines a
person’s stage of life . Set a value for the variable age , and then:

If the person is less than 2 years old, print a message that the
person is a baby .
If the person is at least 2 years old but less than 4, print a
message that the person is a toddler .
If the person is at least 4 years old but less than 13, print a
message that the person is a kid .

If the person is at least 13 years old but less than 20, print a
message that the person is a teenager .
If the person is at least 20 years old but less than 65, print a
message that the person is an adult .
If the person is age 65 or older, print a message that the
person is an elder .

5‐7 Favorite Fruit: Make a list of your favorite fruits, and then write
a series of independent if statements that check for certain fruits in
your list.

Make a list of your three favorite fruits and call it favorite_fruits.
Write five if statements . Each should check whether a certain
kind of fruit is in your list . If the fruit is in your list, the if block
should print a statement, such as You really like bananas!

5.4 Using if statements with lists

let’s take a closer look at how you can watch for special values in a
list and handle those values appropriately.
The pizzeria displays a message
whenever a topping is added to your pizza, as it’s being made. The
code for this action can be written very efficiently by making a list
of toppings the customer has requested and using a loop to
announce each topping as it’s added to the pizza:

requested_toppings = ['mushrooms', 'green peppers', 'extra cheese'
for requested_topping in requested_toppings:
 print("Adding " + requested_topping + ".")
print("\nFinished making your pizza!")

The output is straightforward because this code is just a
simple for loop:

Adding mushrooms.
Adding green peppers.
Adding extra cheese.
Finished making your pizza!

But what if the pizzeria runs out of green peppers? An if statement
inside the for loop can handle this situation appropriately:

requested_toppings = ['mushrooms', 'green peppers', 'extra cheese'
for requested_topping in requested_toppings:
❶if requested_topping == 'green peppers':
 print("Sorry, we are out of green peppers right now.")
❷else:
 print("Adding " + requested_topping + ".")
print("\nFinished making your pizza!")

This time we check each requested item before adding it to
the pizza.The code at ❶ checks to see if the person requested
green peppers. If so,we display a message informing them
why they can’t have green peppers.The else block at ❷
ensures that all other toppings will be added to thepizza.

The output shows that each requested topping is handled
appropriately.

Adding mushrooms.
Sorry, we are out of green peppers right now.
Adding extra cheese.
Finished making your pizza!

5.4.2 Checking That a List Is Not Empty

As an example, let’s check whether the list of requested toppings is
empty before building the pizza. If the list is empty, we’ll prompt
the user and make sure they want a plain pizza. If the list is not
empty, we’ll build the pizza just as we did in the previous examples:

❶requested_toppings = []
❷if requested_toppings:
 for requested_topping in requested_toppings:
 print("Adding " + requested_topping + ".")
 print("\nFinished making your pizza!")
❸ else:
 print("Are you sure you want a plain pizza?")

This time we start out with an empty list of requested
toppings at ❶.Instead of jumping right into a for loop, we do
a quick check at ❷. When the name of a list is used in an if
statement, Python returns True if the list contains at least one
item; an empty list evaluates to False . If requested_toppings
passes the conditional test, we run the same for loop we used
in the previous example. If the conditional test fails, we print a
message asking the customer if they really want a plain pizza
with no toppings ❸.

5.4.3 Using Multiple Lists

People will ask for just about anything, especially when it comes to
pizza toppings. What if a customer actually wants french fries on
their pizza? You can use lists and if statements to make sure your
input makes sense before you act on it.

Let’s watch out for unusual topping requests before we build a
pizza.The following example defines two lists. The first is a list of
available toppings at the pizzeria, and the second is the list of
toppings that the user has requested. This time, each item in
requested_toppings is checked against the ist of available toppings
before it’s added to the pizza:

❶ available_toppings = ['mushrooms', 'olives', 'green peppers',
'pepperoni', 'pineapple', 'extra cheese']
❷ requested_toppings = ['mushrooms', 'french fries', 'extra cheese'
❸ for requested_topping in requested_toppings:
❹ if requested_topping in available_toppings:
 print("Adding " + requested_topping + ".")
❺ else:
 print("Sorry, we don't have " + requested_topping + "."
print("\nFinished making your pizza!")

At ❶ we define a list of available toppings at this pizzeria. Note
that his could be a tuple if the pizzeria has a stable selection of
toppings. At ❷,we make a list of toppings that a customer has
requested. Note the unusual request, 'french fries' . At ❸ we loop
through the list of requested toppings. nside the loop, we first
check to see if each requested topping is actually n the list of
available toppings ❹. If it is, we add that topping to the pizza.If
the requested topping is not in the list of available toppings, the
else block will run ❺. The else block prints a message telling the
user which toppings are unavailable.
This code syntax produces clean, informative output:

Adding mushrooms.
Sorry, we don't have french fries.
Adding extra cheese.
Finished making your pizza!

Try It yourself

5‐8 Hello Admin: Make a list of five or more usernames, including
the name 'admin' . Imagine you are writing code that will print a
greeting to each user after they log in to a website . Loop through
the list, and print a greeting to each user:

If the username is 'admin' , print a special greeting, such as
Hello admin, would you like to see a status report?

Otherwise, print a generic greeting, such as Hello Eric, thank
you for logging in again.

5‐9 No Users: Add an if test to hello_admin.py to make sure the list
of users is not empty .

If the list is empty, print the message We need to find some
users!

Remove all of the usernames from your list, and make sure the
correct message is printed .

5‐10 Checking Usernames: Do the following to create a program
that simulates how websites ensure that everyone has a unique
username .

Make a list of five or more usernames called current_users
Make another list of five usernames called new_users . Make
sure one or two of the new usernames are also in the
current_users list .

Loop through the new_users list to see if each new username
has already been used . If it has, print a message that the
person will need to enter a new username . If a username has
not been used, print a message saying that the username is
available .
Make sure your comparison is case insensitive . If 'John' has
been used,'JOHN' should not be accepted .

5‐11 Ordinal Numbers: Ordinal numbers indicate their position in a
list, such as 1st or 2nd . Most ordinal numbers end in th, except 1, 2,
and 3 .

Store the numbers 1 through 9 in a list .

Loop through the list .
Use an if ‐ elif ‐ else chain inside the loop to print the proper
ordinal ending for each number . Your output should read "1st
2nd 3rd 4th 5th 6th 7th 8th 9th",and each result should be on
a separate line .

5.5 Styling your if statements

In every example in this chapter, you’ve seen good styling habits.
The only recommendation PEP 8 provides for styling conditional
tests is to use a single space around comparison operators, such as
== , >= , <= . For example:

if age < 4

is better than:

if age<4

Such spacing does not affect the way Python interprets your code;
it just makes your code easier for you and others to read.

Try It yourself

5‐12 Styling if statements: Review the programs you wrote in this
chapter,andmake sure you styled your conditional tests
appropriately .
5‐13 Your Ideas: At this point, you’re a more capable programmer
than you were when you started this book . Now that you have a
better sense of how real‐world situations are modeled in programs,
you might be thinking of some problems you could solve with your
own programs . Record any new ideas you have about problems
you might want to solve as your programming skills continue to
improve . Consider games you might want to write, data sets you
might want to explore, and web applications you’d like to create .

5.6 Summary

In this chapter you learned how to write conditional tests, which
always evaluate to True or False . You learned to write simple if
statements, if ‐ else chains, and if ‐ elif ‐ else chains. You began
using these structures to identify particular conditions you needed
to test and to know when those conditions have been met in your
programs. You learned to handle certain items in a list differently
than all other items while continuing to utilize the efficiency of a for
loop. You also revisited Python’s style recommendations to ensure
that your increasingly complex programs are still relatively easy to
read and understand.

In Chapter 6 you’ll learn about Python’s dictionaries. A
dictionary is similar to a list, but it allows you to connect
pieces of information. You’ll learn to build dictionaries, loop
through them, and use them in combination with lists and if
statements. Learning about dictionaries will enable you to
model an even wider variety of real‐world situations.

