User Input and while Loops

Main content

7.1 How the input() Function Works

7.2 Introducing while Loops

7.3 Using a while Loop with Lists and Dictionaries
7.4 Summary

file:///C:/Users/f1553/Desktop/chapter6-7/chapter07.md
file:///C:/Users/f1553/Desktop/chapter6-7/chapter07.md
file:///C:/Users/f1553/Desktop/chapter6-7/chapter07.md
file:///C:/Users/f1553/Desktop/chapter6-7/chapter07.md

7.1 How the input () Function Works

E3The input() function pauses your program and waits for the user to enter some
text. Once Python receives the user’s input, it stores it in a variable to make it
convenient for you to work with.

E3For example, the following program asks the user to enter some text, then displays
that message back to the user:

message = input("Tell me something, and I will \
repeat it back to you: ")
print(message)

E3The input() function takes one argument: the prompt, or instructions, that we want
to display to the user so they know what to do. In this example, when Python runs the
first line, the user sees the prompt Tell me something, and I will repeat it back to
you: . The program waits while the user enters their response and continues after the
user presses enter. The response is stored in the variable message, then

print(message) displays the input back to the user:

Tell me something, and I will repeat it back to you: Hello everyone!
Hello everyone!

EdNote Sublime Text doesn’t run programs that prompt the user for input. You can use
Sublime Text to write programs that prompt for input, but you'll need to run these
programs from a terminal. See “Running Python Programs from a Terminal” on 1.4.

7.1.1 Writing Clear Prompts

E3Each time you use the input() function, you should include a clear, easy-to-follow
prompt that tells the user exactly what kind of information you're looking for. Any
statement that tells the user what to enter should work. For example:

name = input("Please enter your name: ")
print("Hello, " + name + "!")

EJAdd a space at the end of your prompts (after the colon in the preceding example)
to separate the prompt from the user’'s response and to make it clear to your user
where to enter their text. For example:

Please enter your name: Eric
Hello, Eric!

EJSometimes you'll want to write a prompt that's longer than one line. For example,
you might want to tell the user why you're asking for certain input. You can store your
prompt in a variable and pass that variable to the input() function. This allows you to
build your prompt over several lines, then write a clean input() statement.

prompt = "If you tell us who you are, \
we can personalize the messages you see.”
prompt += "\nWhat is your first name? "
name = input(prompt)

print("\nHello, " + name + "!")

EJThis example shows one way to build a multi-line string. The first line stores the first
part of the message in the variable prompt . In the second line, the operator += takes
the string that was stored in prompt and adds the new string onto the end.

EJThe prompt now spans two lines, again with space after the question mark for clarity:

If you tell us who you are, we can personalize the messages you see.
What is your first name? Eric
Hello, Eric!

7.1.2 Using int() to Accept Numerical Input

E3When you use the input() function, Python interprets everything the user enters as
a string. Consider the following interpreter session, which asks for the user’s age:

>>> age = input("How old are you? ")
How old are you? 21

>>> age

51

E3The user enters the number 21, but when we ask Python for the value of age, it
returns '21', the string representation of the numerical value entered. We know Python
interpreted the input as a string because the number is now enclosed in quotes. If all
you want to do is print the input, this works well.

E3But if you try to use the input as a number, you'll get an error:

>>> age = input("How old are you? ")

How old are you? 21

®>>> age >= 18

Traceback (most recent call last):

File "<stdin>»", line 1, in <module>

® TypeError: unorderable types: str() >= int()

EIWhen you try to use the input to do a numerical comparison), Python produces an
error because it can't compare a string to an integer: the string '21' that's stored in

age can't be compared to the numerical value 18 @.

E3We can resolve this issue by using the int() function, which tells Python to treat the
input as a numerical value. The int() function converts a string representation of a
number to a numerical representation, as shown here:

>>> age = input("How old are you? ")
How old are you? 21

®>>> age = int(age)

>>> age >= 18

True

E3In this example, when we enter 21 at the prompt, Python interprets the number as a
string, but the value is then converted to a numerical representation by int() .
Now Python can run the conditional test: it compares age (which now contains the
numerical value 21) and 18 to seeif age is greater than or equal to 18. This test
evaluates to True.

10

E3How do you use the int() function in an actual program? Consider a program that
determines whether people are tall enough to ride a roller coaster:

height = input("How tall are you, in inches? ")

height = int(height)

if height >= 36:

print("\nYou're tall enough to ride!")

else:

print("\nYou'll be able to ride when you're a little older.")

11

EJThe program can compare height to 36 because height = int(height) converts
the input value to a numerical representation before the comparison is made. If the
number entered is greater than or equal to 36, we tell the user that they're tall enough:

How tall are you, in inches? 71
You're tall enough to ride!

EIWhen you use numerical input to do calculations and comparisons, be sure to
convert the input value to a numerical representation first.

12

7.1.3 The Modulo Operator

EJA useful tool for working with numerical information is the modulo operator (%),
which divides one number by another number and returns the remainder:

>>>4 % 3
1
>>>5 % 3
2
>>>6 % 3
%)
>>>7 % 3
1

EJThe modulo operator doesn't tell you how many times one number fits into another;
it just tells you what the remainder is.

13

E3When one number is divisible by another number, the remainder is 0, so the modulo
operator always returns 0. You can use this fact to determine if a number is even or
odd:

number = input("Enter a number, and I'll tell you if it's \

even or odd: ")

number = int(number)

if number % 2 == 0:
print("\nThe number

+ str(number) + " is even.")

else:

print("\nThe number " + str(number) + " is odd.")

EJEven numbers are always divisible by two, so if the modulo of a number and two is
zero (here, if number % 2 == @) the number is even. Otherwise,
it's odd.

Enter a number, and I'l1l tell you if it's even or odd: 42
The number 42 is even.

14

7.1.4 Accepting Input in Python 2.7

E3If you're using Python 2.7, you should use the raw_input() function when
prompting for user input. This function interprets all input as a string, just as input()
does in Python 3.

E3Python 2.7 has an input() function as well, but this function interprets the user's
input as Python code and attempts to run the input. At best you'll get an error that
Python doesn’t understand the input; at worst you'll run code that you didn’t intend to
run. If you're using Python 2.7, use raw_input() instead of input() .

15

Try It Yourself

E37-1 Rental Car : Write a program that asks the user what kind of rental car they
would like. Print a message about that car, such as “Let me see if I can find you a
Subaru.”

E37-2 Restaurant Seating : Write a program that asks the user how many people are in
their dinner group. If the answer is more than eight, print a message saying they’ll have
to wait for a table. Otherwise, report that their table is ready.

E37-3 Multiples of Ten : Ask the user for a number, and then report whether the
number is a multiple of 10 or not.

16

7.2 Introducing while Loops

E3The for loop takes a collection of items and executes a block of code once for each

item in the collection. In contrast, the while loop runs as long as, or while, a certain
condition is true.

17

7.2.1 The while Loop in Action

E3You can use a while loop to count up through a series of numbers. For example, the
following while loop counts from 1 to 5:

current_number = 1

while current_number <= 5:
print(current_number)
current_number += 1

E3In the first line, we start counting from 1 by setting the value of current_number to 1.
The while loop is then set to keep running as long as the value of current_number is
less than or equal to 5. The code inside the loop prints the value of current_number

and then adds 1 to that value with current_number += 1. (The += operator is
shorthand for current_number = current_number + 1))

18

E3Python repeats the loop as long as the condition current_number <= 5 is true.
Because 1 is less than 5, Python prints 1 and then adds 1, making the current number 2.
Because 2 is less than 5, Python prints 2 and adds 1 again, making the current number
3, and so on. Once the value of current_number is greater than 5, the loop stops
running and the program ends:

uviph WNER

E3The programs you use every day most likely contain while loops. For example, a
game needs a while loop to keep running as long as you want to keep playing, and so
it can stop running as soon as you ask it to quit. Programs wouldn’t be fun to use if
they stopped running before we told them to or kept running even after we wanted to
quit, so while loops are quite useful.

19

7.2.2 Letting the User Choose When to Quit

E3We can make the parrot.py program run as long as the user wants by putting most of

the program inside a while loop. We'll define a quit value and then keep the program
running as long as the user has not entered the quit value:

20

http://parrot.py/

@eprompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

emessage =

®ewhile message l= 'quit':
message = input(prompt)
print(message)

At @, we define a prompt that tells the user their two options: entering a message or
entering the quit value (in this case, 'quit’). Then we set up a variable message @ to
store whatever value the user enters. We define message as an empty string, "", so
Python has something to check the first time it reaches the while line. The first time
the program runs and Python reaches the while statement, it needs to compare the
value of message to 'quit’, but no user input has been entered yet. If Python has
nothing to compare, it won't be able to continue running the program.

21

To solve this problem, we make sure to give message an initial value. Although it's just
an empty string, it will make sense to Python and allow it to perform the comparison
that makes the while loop work. This while loop @) runs as long as the value of
message IS not 'quit' .

E3The first time through the loop, message is just an empty string, so Python enters

the loop. At message = input(prompt) , Python displays the prompt and waits for the
user to enter their input. Whatever they enter is stored in message and printed; then,
Python reevaluates the condition in the while statement.

22

EJAs long as the user has not entered the word 'quit' , the prompt is displayed again
and Python waits for more input. When the user finally enters 'quit' , Python stops
executing the while loop and the program ends:

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello everyone!
Hello everyone!

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello again.

Hello again.

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit

quit

This program works well, except that it prints the word 'quit' as if it were an actual
message.

23

EJA simple if test fixes this:

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

message =

while message != "'quit':
message = input(prompt)
if message l= 'quit':

print(message)

24

E3Now the program makes a quick check before displaying the message and only
prints the message if it does not match the quit value:

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello everyone!
Hello everyone!

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. Hello again.

Hello again.

Tell me something, and I will repeat it back to you:
Enter 'quit' to end the program. quit

25

7.2.3 Using a Flag

EJIn the previous example, we had the program perform certain tasks while a given
condition was true. But what about more complicated programs in which many
different events could cause the program to stop running?

For example, in a game, several different events can end the game. When the player
runs out of ships, their time runs out, or the cities they were supposed to protect are all
destroyed, the game should end. It needs to end if any one of these events happens. If
many possible events might occur to stop the program, trying to test all these
conditions in one while statement becomes complicated and difficult.

26

For a program that should run only as long as many conditions are true, you can define
one variable that determines whether or not the entire program is active. This variable,
called a flag, acts as a signal to the program. We can write our programs so they run
while the flag is set to True and stop running when any of several events sets the value
of the flag to False . As a result, our overall while statement needs to check only one
condition: whether or not the flag is currently True. Then, all our other tests (to see if an
event has occurred that should set the flag to False) can be neatly organized in the

rest of the program.

27

EdLet's add a flag to parrot.py from the previous section. This flag, which we'll call
active (though you can call it anything), will monitor whether or not the program

should continue running:

prompt = "\nTell me something, and I will repeat it back to you:"
prompt += "\nEnter 'quit' to end the program. "

@active = True
ewhile active:
message = input(prompt)
@ if message == "'quit':
active = False
(4] else:
print(message)

28

http://parrot.py/

We set the variable active to True @) so the program starts in an active state. Doing
so makes the while statement simpler because no comparison is made in the while
statement itself; the logic is taken care of in other parts of the program. As long as the
active variable remains True, the loop will continue running @.

Edin the if statement inside the while loop, we check the value of message once the
user enters their input. If the user enters 'quit’ @), we set active to False, and the

while loop stops. If the user enters anything other than 'quit' @, we print their
Input as a message.

29

E3This program has the same output as the previous example where we placed the
conditional test directly in the while statement. But now that we have a flag to
indicate whether the overall program is in an active state, it would be easy to add more
tests (such as elif statements) for events that should cause active to become

False . This is useful in complicated programs like games in which there may be many
events that should each make the program stop running. When any of these events
causes the active flag to become False , the main game loop will exit, a Game Over
message can be displayed, and the player can be given the option to play again.

30

7.2.4 Using break to Exit a Loop

EdTo exit a while loop immediately without running any remaining code in the loop,
regardless of the results of any conditional test, use the break statement. The break
statement directs the flow of your program; you can use it to control which lines of

code are executed and which aren't, so the program only executes code that you want
it to, when you want it to.

For example, consider a program that asks the user about places they've visited. We can

stop the while loop in this program by calling break as soon as the user enters the
‘quit' value:

31

prompt = "\nPlease enter the name of a city you have visited:"
prompt += "\n(Enter 'quit' when you are finished.) "
owhile True:

city = input(prompt)

if city == 'quit’:
break

else:
print("I'd love to go to " + city.title() + "!")

EJA loop that starts with while True @ will run forever unless it reaches a break
statement. The loop in this program continues asking the user to enter

the names of cities they've been to until they enter 'quit' . When they enter 'quit',
the break statement runs, causing Python to exit the loop:

32

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) New York

I'd love to go to New York!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) San Francisco
I'd love to go to San Francisco!

Please enter the name of a city you have visited:
(Enter 'quit' when you are finished.) quit

Note You can use the break statement in any of Python’s loops. For example, you
could use break to quit a for loop that's working through a list or a dictionary.

33

7.2.5 Using continue in a Loop

E3Rather than breaking out of a loop entirely without executing the rest of its code,
you can use the continue statement to return to the beginning of the

loop based on the result of a conditional test. For example, consider a loop that counts
from 1 to 10 but prints only the odd numbers in that range:

current_number = 0
while current_number < 10:
@ current_number += 1
if current_number % 2 == 0:
continue
print(current_number)

First we set current_number to 0. Because it's less than 10, Python enters the while loop.

Once inside the loop, we increment the count by 1 at), so current_number is 1.

34

E3The if statement then checks the modulo of current number and 2. If the modulo
Is O (which means current_number is divisible by 2), the continue statement tells
Python to ignore the rest of the loop and return to the beginning. If the current number
Is not divisible by 2, the rest of the loop is executed and Python prints the current
number:

O dUVTWERE

35

7.2.6 Avoiding Infinite Loops

EJEvery while loop needs a way to stop running so it won't continue to run forever.
For example, this counting loop should count from 1 to 5:

X =1

while x <= 5:
print(x)
X +=1

But if you accidentally omit the line x += 1 (as shown next), the loop will run forever:

I R R R R

-sSnip--

36

Every programmer accidentally writes an infinite while loop from time to time,
especially when a program'’s loops have subtle exit conditions. If your program gets
stuck in an infinite loop, press CTRL-C or just close the terminal window displaying your

program’s output.

37

E3To avoid writing infinite loops, test every while loop and make sure the loop stops
when you expect it to. If you want your program to end when the user enters a certain
input value, run the program and enter that value. If the program doesn’t end,
scrutinize the way your program handles the value that should cause the loop to exit.
Make sure at least one part of the program can make the loop’s condition False or
cause it to reach a break statement.

EdNote Some editors, such as Sublime Text, have an embedded output window. This can
make (t difficult to stop an infinite loop, and you might have to close the editor to end the
loop.

38

Try It Yourself

E37-4. Pizza Toppings: Write a loop that prompts the user to enter a series of pizza
toppings until they entera 'quit' value. As they enter each topping, print a message
saying you'll add that topping to their pizza.

E37-5. Movie Tickets: A movie theater charges different ticket prices depending on a
person’s age. If a person is under the age of 3, the ticket is free; if they are between 3
and 12, the ticket is $10; and if they are over age 12, the ticket is $15. Write a loop in
which you ask users their age, and then tell them the cost of their movie ticket.

39

E37-6. Three Exits: Write different versions of either Exercise 7-4 or Exercise 7-5 that do
each of the following at least once:

e Use a conditional test in the while statement to stop the loop.

e Use an active variable to control how long the loop runs.

e Use a break statement to exit the loop when the user enters a 'quit' value.

E37-7. Infinity: Write a loop that never ends, and run it. (To end the loop, press CTRL-C
or close the window displaying the output.)

40

7.3 Using a while Loop with Lists and Dictionaries

E3So far, we've worked with only one piece of user information at a time. We received
the user’s input and then printed the input or a response to it. The next time through
the while loop, we'd receive another input value and respond to that. But to keep
track of many users and pieces of information, we'll need to use lists and dictionaries
with our while loops.

A for loop is effective for looping through a list, but you shouldn’'t modify a list inside
a for loop because Python will have trouble keeping track of the items in the list. To
modify a list as you work through it, use a while loop. Using while loops with lists
and dictionaries allows you to collect, store, and organize lots of input to examine and
report on later.

41

7.3.1 Moving Items from One List to Another

E3Consider a list of newly registered but unverified users of a website. After we verify
these users, how can we move them to a separate list of confirmed users? One way
would be to use a while loop to pull users from the list of unconfirmed users as we
verify them and then add them to a separate list of confirmed users. Here's what that
code might look like:

42

=+

@

Start with users that need to be verified,

and an empty list to hold confirmed users.
unconfirmed users = ['alice', 'brian', 'candace']
confirmed users = []

Verify each user until there are no more unconfirmed users.

Move each verified user into the list of confirmed users.
while unconfirmed users:
current_user = unconfirmed_users.pop()
print("Verifying user: " + current_user.title())
confirmed users.append(current_user)
Display all confirmed users.
print("\nThe following users have been confirmed:")
for confirmed _user in confirmed_ users:
print(confirmed user.title())

43

EBWwe begin with a list of unconfirmed users at 0 (Alice, Brian, and Candace) and an
empty list to hold confirmed users. The while loop at @ runs as long as the list
unconfirmed_users Is not empty. Within this loop, the pop() function at 9 removes
unverified users one at a time from the end of unconfirmed users . Here, because
Candace is last in the unconfirmed users list, her name will be the first to be removed,

stored in current_user , and added to the confirmed users list at 9 Next is Brian,
then Alice.

44

E3We simulate confirming each user by printing a verification message and then
adding them to the list of confirmed users. As the list of unconfirmed users shrinks, the
list of confirmed users grows. When the list of unconfirmed users is empty, the loop
stops and the list of confirmed users is printed:

Verifying user: Candace

Verifying user: Brian

Verifying user: Alice

The following users have been confirmed:
Candace

Brian

Alice

45

7.3.2 Removing All Instances of Specific Values from a List

Bin Chapter 3 we used remove() to remove a specific value from a list. The remove()
function worked because the value we were interested in appeared

only once in the list. But what if you want to remove all instances of a value from a list?
EJSay you have a list of pets with the value 'cat' repeated several times. To remove

all instances of that value, you can run a while loop until 'cat' is no longer in the list,

as shown here:

pets = ['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat']
print(pets)
while 'cat' in pets:

pets.remove('cat"')

print(pets)

46

E3We start with a list containing multiple instances of 'cat' . After printing the list,
Python enters the while loop because it finds the value 'cat' in the list at least once.
Once inside the loop, Python removes the first instance of 'cat', returns to the while
line, and then reenters the loop when it finds that 'cat' is still in the list. It removes
each instance of 'cat' until the value is no longer in the list, at which point Python
exits the loop and prints the list again:

['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit’', 'cat']
['dog', 'dog', 'goldfish', 'rabbit']

47

7.3.3 Filling a Dictionary with User Input

EJYou can prompt for as much input as you need in each pass through a while loop.
Let's make a polling program in which each pass through the loop prompts for the

participant's name and response. We'll store the data we gather in a dictionary, because
we want to connect each response with a particular user:

48

responses = {}
Set a flag to indicate that polling is active.
polling active = True
while polling active:
Prompt for the person's name and response.
o name = input("\nWhat is your name? ")
response = input("Which mountain would you like to climb someday? ")

Store the response in the dictionary:
2] responses[name] = response

Find out if anyone else is going to take the poll.
5] repeat = input("Would you like to let another person respond? (yes/ no) ")
if repeat == 'no':
polling active = False
Polling is complete. Show the results.

print("\n--- Poll Results ---")
® for name, response in responses.items():
print(name + " would like to climb " + response + ".")

49

The program first defines an empty dictionary (responses) and sets a flag

(polling_active) to indicate that polling is active. As long as polling_active is True,
Python will run the code in the while loop.

EJWithin the loop, the user is prompted to enter their username and a mountain they'd
like to climb @). That information is stored in the responses dictionary @, and the
user is asked whether or not to keep the poll running €. If they enter yes, the program
enters the while loop again. If they enter no, the polling active flag is set to False,
the while loop stops running, and the final code block at @ displays the results of the
poll.

50

If you run this program and enter sample responses, you should see output like this:

What is your name? Eric
Which mountain would you like to climb someday? Denali
Would you like to let another person respond? (yes/ no) yes

What is your name? Lynn
Which mountain would you like to climb someday? Devil's Thumb
Would you like to let another person respond? (yes/ no) no

--- Poll Results ---
Lynn would like to climb Devil's Thumb.
Eric would like to climb Denali.

51

Try It Yourself

E37-8. Deli: Make a list called sandwich_orders and fill it with the names of various
sandwiches. Then make an empty list called finished_sandwiches . Loop through the
list of sandwich orders and print a message for each order, such as I made your tuna
sandwich . As each sandwich is made, move it to the list of finished sandwiches. After all
the sandwiches have been made, print a message listing each sandwich that was made.

52

E37-9. No Pastrami: Using the list sandwich_orders from Exercise 7-8, make sure the
sandwich ‘'pastrami' appears in the list at least three times. Add code near the
beginning of your program to print a message saying the deli has run out of pastrami,
and then use a while loop to remove all occurrences of 'pastrami' from
sandwich_orders . Make sure no pastrami sandwiches end up in finished_sandwiches .
£37-10. Dream Vacation: Write a program that polls users about their dream vacation.
Write a prompt similar to If you could visit one place in the world, where would you go?
Include a block of code that prints the results of the poll.

53

7.4 Summary

E3In this chapter you learned how to use input() to allow users to provide their own
information in your programs. You learned to work with both text and numerical input
and how to use while loops to make your programs run as long as your users want
them to. You saw several ways to control the flow of a while loop by setting an active
flag, using the break statement, and using the continue statement. You learned how
to use a while loop to move items from one list to another and how to remove all
instances of a value from a list. You also learned how while loops can be used with
dictionaries.

54

EdIn Chapter 8 you'll learn about functions. Functions allow you to break your programs
into small parts, each of which does one specific job. You can call a function as many

times as you want, and you can store your functions in separate files. By using
functions, you'll be able to write more efficient code that's easier to troubleshoot and

maintain and that can be reused in many different programs.

55

