
Chapter IX CLASSES



Object‐oriented programming is one of the most effective
approaches to writing software. In object‐oriented programming
you write classes that represent real‐world things and situations,
and you create objects based on these classes. When you write a
class, you defne the general behavior that a whole category of
objects can have.When you create individual objects from the
class, each object is automatically equipped with the general
behavior; you can then give each object whatever unique traits
you desire. You’ll be amazed how well real‐world situations can
be modeled with object‐oriented programming.



Making an object from a class is called instantiation, and you
work with instances of a class. In this chapter you’ll write classes
and create instances of those classes. You’ll specify the kind of
information that can be stored in instances, and you’ll defne
actions that can be taken with these instances. You’ll also write
classes that extend the functionality of existing classes, so similar
classes can share code effciently. You’ll store your classes in
modules and import classes written by other programmers into
your own program files.



9.1 Creating and Using a Class

9.1.1 Creating the Dog Class

#####Each instance created from the Dog class will store a name
and an age, and we’ll give each dog the ability to sit﴾﴿ and
roll_over﴾﴿:

class Dog():
    def __init__(self, name, age):
    """Initialize name and age attributes."""
       self.name = name
       self.age = age
       
    def sit(self):
    """Simulate a dog sitting in response to a command."""
       print(self.name.title() + " is now sitting.")
       
    def roll_over(self):
    """Simulate rolling over in response to a command."""
       print(self.name.title() + " rolled over!")



    def __init__(self, name, age):
    """Initialize name and age attributes."""
       self.name = name
       self.age = age

A function that’s part of a class is a method.The init﴾﴿ method at
w is a special method，Python runs automatically whenever we
create a new instance based on the Dog class. This method has
two leading underscores and two trailing underscores, a
convention that helps prevent Python’s default method names
from conflicting with your method names.



We defne the init﴾﴿ method to have three parameters: self, name,
and age. Python calls this init﴾﴿ method later to create an instance
of Dog, the method call will automatically pass the self
argument.Every method call associated with a class automatically
passes self, which is a reference to the instance itself; it gives the
individual instance access to the attributes and methods in the
class.When we make an instance of Dog,Python will call the init﴾﴿
method from the Dog class. We’ll pass Dog﴾﴿ a name and an age
as arguments; self is passed automatically, so we don’t need to
pass it. Whenever we want to make an instance from the Dog
class,we’ll provide values for only the last two parameters, name
and age.



my_dog = Dog('willie', 6)

Any variable prefxed with self is available to every method in the
class, and we’ll also be able to access these variables through any
instance created from the class. self. name = name takes the value
stored in the parameter name and stores it in the variable name,
which is then attached to the instance being created. The same
process happens with self.age = age. Variables that are accessible
through instances like this are called attributes.



9.1.2 Making an Instance from a Class

Let’s make an instance representing a specifc dog:

class Dog():
    ‐‐snip‐‐
    
my_dog = Dog('willie', 6)

print("My dog's name is " + my_dog.name.title() + ".")
print("My dog is " + str(my_dog.age) + " years old.")



1. accessing attributes

To access the attributes of an instance, you use dot notation. At
we access the value of my_dog’s attribute name by writing:

my_dog.name

Here Python looks at the instance my_dog and then finds the
attribute name associated with my_dog. This is the same attribute
referred to as self. name in the class Dog. At we use the same
approach to work with the attribute age.。



2. Calling Methods

After we create an instance from the class Dog, we can use dot
notation to call any method defned in Dog. Let’s make our dog sit
and roll over:

class Dog():
    ‐‐snip‐‐
    
my_dog = Dog('willie', 6)
my_dog.sit()
my_dog.roll_over()



To call a method, give the name of the instance ﴾in this case,
my_dog﴿ and the method you want to call, separated by a dot.
When Python reads my_dog.sit﴾﴿, it looks for the method sit﴾﴿ in
the class Dog and runs that code. Python interprets the line
my_dog.roll_over﴾﴿ in the same way.

print

Willie is now sitting.
Willie rolled over!



3. Creating Multiple Instances

You can create as many instances from a class as you need. Let’s
create a second dog called your_dog:

class Dog():
    ‐‐snip‐‐
my_dog = Dog('willie', 6)
your_dog = Dog('lucy', 3)

print("My dog's name is " + my_dog.name.title() + ".")
print("My dog is " + str(my_dog.age) + " years old.")
my_dog.sit()

print("\nYour dog's name is " + your_dog.name.title() + ".")
print("Your dog is " + str(your_dog.age) + " years old.")
your_dog.sit()



My dog's name is Willie.
My dog is 6 years old.
Willie is now sitting.

Your dog's name is Lucy.
Your dog is 3 years old.
Lucy is now sitting.



TRY IT

9‐1. Restaurant: Make a class called Restaurant The init﴾﴿ method
for Restaurant should store two attributes: a restaurant_name and
a cuisine_type Make a method called describe_restaurant﴾﴿ that
prints these two pieces of information, and a method called
open_restaurant﴾﴿ that prints a message indicating that the
restaurant is open. Make an instance called restaurant from your
class Print the two attributes individually, and then call both
methods.



9‐2 Three Restaurants: Start with your class from Exercise 9‐1
Create three different instances from the class, and call
describe_restaurant﴾﴿ for each instance.

9‐3 Users: Make a class called User Create two attributes called
first_name and last_name, and then create several other attributes
that are typically stored in a user profle Make a method called
describe_user﴾﴿ that prints a summary of the user’s information
Make another method called greet_user﴾﴿ that prints a
personalized greeting to the user .Create several instances
representing different users, and call both methods for each user



9.2 Working with Classes and Instances

9.2.1 The Car Class

Let’s write a new class representing a car. Our class will store
information about the kind of car we’re working with, and it will
have a method that summarizes this information:

class Car():
    """A simple attempt to represent a car."""
    def __init__(self, make, model, year):
       """"Initialize attributes to describe a car."""
       self.make = make
       self.model = model
       self.year = year
       
    def get_descriptive_name(self):
       """Return a neatly formatted descriptive name."""
       long_name = str(self.year) + ' ' + self.make 
                                   + ' ' + self.model
       return long_name.title()
       
my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())



9.2.2 Setting a Default Value for an Attribute

Every attribute in a class needs an initial value, even if that value
is 0 or an empty string. In some cases, such as when setting a
default value, it makes sense to specify this initial value in the
body of the init﴾﴿ method; if you do this for an attribute, you
don’t have to include a parameter for that attribute. Let’s add an
attribute called odometer_reading that always starts with avalue
of 0. We’ll also add a method read_odometer﴾﴿ that helps us read
each car’s odometer:



class Car():
    def __init__(self, make, model, year):
       self.make = make
       self.model = model
       self.year = year
       self.odometer_reading = 0
       
    def get_descriptive_name(self):
       ‐‐snip‐‐
       
    def read_odometer(self):
       print("This car has " + str(self.odometer_reading) + 
                                            " miles on it.")
my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())
my_new_car.read_odometer()



Our car starts with a mileage of 0:

2016 Audi A4
This car has 0 miles on it.



9.2.3 Modifying Attribute Values

You can change an attribute’s value in three ways: you can change
the value directly through an instance, set the value through a
method, or increment the value ﴾add a certain amount to it﴿
through a method. Let’s look at each of these approaches.

1. Modifying an attribute’s Value Directly

The simplest way to modify the value of an attribute is to access
the attribute directly through an instance. Here we set the
odometer reading to 23 directly:

class Car():
    ‐‐snip‐‐ 
my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())

my_new_car.odometer_reading = 23
my_new_car.read_odometer()



2. Modifying an attribute’s Value through a Method

It can be helpful to have methods that update certain attributes
for you. Instead of accessing the attribute directly, you pass the
new value to a method that handles the updating internally.

Here’s an example showing a method called update_odometer﴾﴿:

class Car():
    ‐‐snip‐‐
    def update_odometer(self, mileage):
        """Set the odometer reading to the given value."""
        self.odometer_reading = mileage
        
my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())

my_new_car.update_odometer(23)
my_new_car.read_odometer()

The only modifcation to Car is the addition of update_odometer﴾﴿
.This method takes in a mileage value and stores it in
self.odometer_reading.



3. Incrementing an attribute’s Value through a Method

Sometimes you’ll want to increment an attribute’s value by a
certain amount rather than set an entirely new value. Say we buy
a used car and put 100 miles on it between the time we buy it and
the time we register it. Here’s a method that allows us to pass this
incremental amount and add that value to the odometer reading:



class Car():
    ‐‐snip‐‐
    def update_odometer(self, mileage):
       ‐‐snip‐‐
       
❶   def increment_odometer(self, miles):
       """Add the given amount to the odometer reading."""
       self.odometer_reading += miles
       
❷ my_used_car = Car('subaru', 'outback', 2013)
print(my_used_car.get_descriptive_name())

❸ my_used_car.update_odometer(23500)
my_used_car.read_odometer()

❹ my_used_car.increment_odometer(100)
my_used_car.read_odometer()



The new method increment_odometer﴾﴿ at ❶ takes in a number
of miles, and adds this value to self.odometer_reading. At ❷ we
create a used car, my_used_car. We set its odometer to 23,500 by
calling update_odometer﴾﴿ and passing it 23500 at❸.At❹we call
increment_odometer﴾﴿ and pass it 100 to add the 100 miles that
we drove between buying the car and registering it:

Output：

2013 Subaru Outback
This car has 23500 miles on it.
This car has 23600 miles on it.



TRY IT YOURSELF

9‐4 Number Served: Start with your program from Exercise 9‐1 ﴾page
166﴿ Add an attribute called number_served with a default value of 0
Create an instance called restaurant from this class Print the number of
customers the restaurant has served, and then change this value and
print it again.

Add a method called set_number_served﴾﴿ that lets you set the number
of customers that have been served.Call this method with a new number
and print the value again.Add a method called
increment_number_served﴾﴿ that lets you increment the number of
customers who’ve been served.Call this method with any number you
like that could represent how many customers were served in, say, a day
of business.



9‐5 Login Attempts: Add an attribute called login_attempts to your User
class from Exercise 9‐3 ﴾page 166﴿ Write a method called increment_
login_attempts﴾﴿ that increments the value of login_attempts by 1 .Write
another method called reset_login_attempts﴾﴿ that resets the value of
login_attempts to 0.Make an instance of the User class and call
increment_login_attempts﴾﴿ several times .Print the value of
login_attempts to make sure it was incremented properly, and then call
reset_login_attempts﴾﴿ .Print login_attempts again to make sure it was
reset to 0.



9.3 Inheritance

You don’t always have to start from scratch when writing a class.
If the class you’re writing is a specialized version of another class
you wrote, you can use inheritance. When one class inherits from
another, it automatically takes on all the attributes and methods
of the first class. The original class is called the parent class, and
the new class is the child class. The child class inherits every
attribute and method from its parent class but is also free to
define new attributes and methods of its own.



9.3.1 The init﴾﴿ Method for a Child Class

The first task Python has when creating an instance from a child
class is to assign values to all attributes in the parent class. To do
this, the init﴾﴿ method for a child class needs help from its parent
class.

As an example, let’s model an electric car. An electric car is just a
specifc kind of car, so we can base our new ElectricCar class on
the Car class we wrote earlier. Then we’ll only have to write code
for the attributes and behavior specifc to electric cars.



Let’s start by making a simple version of the ElectricCar class,
which does everything the Car class does:

electric_car.py

① class Car():
    def __init__(self, make, model, year):
      self.make = make
      self.model = model
      self.year = year
      self.odometer_reading = 0
    def get_descriptive_name(self):
      long_name = str(self.year) + ' ' + self.make + 
                                     ' ' + self.model
      return long_name.title()
    def read_odometer(self):
      print("This car has " + str(self.odometer_reading) + 
                                           " miles on it.")
    def update_odometer(self, mileage):
      if mileage >= self.odometer_reading:
         self.odometer_reading = mileage
      else:
         print("You can't roll back an odometer!")
    def increment_odometer(self, miles):
         self.odometer_reading += miles



② class ElectricCar(Car):
    """Represent aspects of a car, specific to electric vehicles."""
③   def __init__(self, make, model, year):
       """Initialize attributes of the parent class."""
④      super().__init__(make, model, year)

⑤ my_tesla = ElectricCar('tesla', 'model s', 2016)
  print(my_tesla.get_descriptive_name())

At❶we start with Car. When you create a child class, the parent
class must be part of the current file and must appear before the
child class in the file. At❷ we define the child class, ElectricCar.
The name of the parent class must be included in parentheses in
the defnition of the child class. The init﴾﴿ method at ❸takes in
the information required to make a Car instance.



The super﴾﴿ function at ❹is a special function that helps Python
make connections between the parent and child class. This line
tells Python to call the init﴾﴿ method from ElectricCar’s parent
class, which gives an ElectricCar instance all the attributes of its
parent class. The name super comes from a convention of calling
the parent class a superclass and the child class a subclass.



We test whether inheritance is working properly by trying to
create an electric car with the same kind of information we’d
provide when making a regular car. At ❺we make an instance of
the ElectricCar class, and store it in my_tesla. This line calls the
init﴾﴿ method defined in ElectricCar, which in turn tells Python to
call the init﴾﴿ method defined in the parent class Car. We provide
the arguments 'tesla', 'model s', and 2016.

Aside from init﴾﴿, there are no attributes or methods yet that are
particular to an electric car. At this point we’re just making sure
the electric car has the appropriate Car behaviors:

2016 Tesla Model S

The ElectricCar instance works just like an instance of Car, so now
we can begin defining attributes and methods specifc to electric
cars.



9.3.2 Inheritance in Python 2.7

In Python 2.7, inheritance is slightly different. The ElectricCar class
would look like this:

class Car(object):
   def __init__(self, make, model, year):
      ‐‐snip‐‐
      
class ElectricCar(Car):
   def __init__(self, make, model, year):
      super(ElectricCar, self).__init__(make, model, year)
      ‐‐snip‐‐

The super﴾﴿ function needs two arguments: a reference to the
child class and the self object. These arguments are necessary to
help Python make proper connections between the parent and
child classes. When you use inheritance in Python 2.7, make sure
you define the parent class using the object syntax as well.



9.3.3 Defining Attributes and Methods for the Child Class

Once you have a child class that inherits from a parent class, you
can add any new attributes and methods necessary to
differentiate the child class from the parent class.

Let’s add an attribute that’s specific to electric cars ﴾a battery, for
example﴿ and a method to report on this attribute. We’ll store the
battery size and write a method that prints a description of the
battery:



class Car():
   ‐‐snip‐‐
   
class ElectricCar(Car):
   def __init__(self, make, model, year):
      super().__init__(make, model, year)
❶     self.battery_size = 70
❷  def describe_battery(self):
      """Print a statement describing the battery size."""
      print("This car has a " + str(self.battery_size) +
                                        "‐kWh battery.")
                                        
my_tesla = ElectricCar('tesla', 'model s', 2016)
print(my_tesla.get_descriptive_name())
my_tesla.describe_battery()



At❶we add a new attribute self.battery_size and set its initial
value to, say, 70. This attribute will be associated with all
instances created from the ElectricCar class but won’t be
associated with any instances of Car. We also add a method called
describe_battery﴾﴿ that prints information about the battery at
❷. When we call this method, we get a description that is clearly
specific to an electric car:

2016 Tesla Model S
This car has a 70‐kWh battery.

There’s no limit to how much you can specialize the ElectricCar
class. You can add as many attributes and methods as you need
to model an electric car to whatever degree of accuracy you need.
An attribute or method that could belong to any car, rather than
one that’s specifc to an electric car, should be added to the Car
class instead of the ElectricCar class. Then anyone who uses the
Car class will have that functionality available as well, and the
ElectricCar class will only contain code for the information and
behavior specifc to electric vehicles.



9.3.4 Overriding Methods from the Parent Class

You can override any method from the parent class that doesn’t
fit what you’re trying to model with the child class. To do this,
you define a method in the child class with the same name as the
method you want to override in the parent class. Python will
disregard the parent class method and only pay attention to the
method you defne in the child class.



Say the class Car had a method called fill_gas_tank﴾﴿. This method
is meaningless for an all‐electric vehicle, so you might want to
override this method. Here’s one way to do that:

def ElectricCar(Car):
   ‐‐snip‐‐
   
def fill_gas_tank():
   """"Electric cars don't have gas tanks."""
   print("This car doesn't need a gas tank!")

Now if someone tries to call fill_gas_tank﴾﴿ with an electric car,
Python will ignore the method fill_gas_tank﴾﴿ in Car and run this
code instead. When you use inheritance, you can make your child
classes retain what you need and override anything you don’t
need from the parent class.



9.3.5 Instances as Attributes

When modeling something from the real world in code, you may
fnd that you’re adding more and more detail to a class. You’ll find
that you have a growing list of attributes and methods and that
your files are becoming lengthy. In these situations, you might
recognize that part of one class can be written as a separate class.
You can break your large class into smaller classes that work
together.

For example, if we continue adding detail to the ElectricCar class,
we might notice that we’re adding many attributes and methods
specific to the car’s battery. When we see this happening, we can
stop and move those attributes and methods to a separate class
called Battery. Then we can use a Battery instance as an attribute
in the ElectricCar class:



  class Car():
     ‐‐snip‐‐
     
❶ class Battery():
     """A simple attempt to model a battery for an electric car."""
❷    def __init__(self, battery_size=70):
        """Initialize the battery's attributes."""
        self.battery_size = battery_size
❸    def describe_battery(self):
        """Print a statement describing the battery size."""
        print("This car has a " + str(self.battery_size) + 
                                            "‐kWh battery.")
                                            
  class ElectricCar(Car):
     """Represent aspects of a car, specific to electric vehicles."""
     def __init__(self, make, model, year):
     """Initialize attributes of the parent class.
Then initialize attributes specific to an electric car."""
        super().__init__(make, model, year)
❹       self.battery = Battery()
  my_tesla = ElectricCar('tesla', 'model s', 2016)

  print(my_tesla.get_descriptive_name())
  my_tesla.battery.describe_battery()



At❶ we define a new class called Battery that doesn’t inherit
from any other class. The init﴾﴿ method at❷has one parameter,
battery_size, in addition to self. This is an optional parameter that
sets the battery’s size to 70 if no value is provided. The method
describe_battery﴾﴿ has been moved to this class as well ❸。

In the ElectricCar class, we now add an attribute called
self.battery❹.This line tells Python to create a new instance of
Battery ﴾with a default size of 70, because we’re not specifying a
value﴿ and store that instance in the attribute self.battery. This will
happen every time the init﴾﴿ method is called; any ElectricCar
instance will now have a Battery instance created
automatically.We create an electric car and store it in the variable
my_tesla. When we want to describe the battery, we need to work
through the car’s battery
attribute:my_tesla.battery.describe_battery﴾﴿



This line tells Python to look at the instance my_tesla, find its
battery attribute, and call the method describe_battery﴾﴿ that’s
associated with the Battery instance stored in the attribute.

The output is identical to what we saw previously:

2016 Tesla Model S
This car has a 70‐kWh battery.



9.3.6 Modeling Real‐World Objects

As you begin to model more complicated items like electric cars,
you’ll wrestle with interesting questions. Is the range of an
electric car a property of the battery or of the car? If we’re only
describing one car, it’s probably fine to maintain the association
of the method get_range﴾﴿ with the Battery class. But if we’re
describing a manufacturer’s entire line of cars, we probably want
to move get_range﴾﴿ to the ElectricCar class. The get_range﴾﴿
method would still check the battery size before determining the
range, but it would report a range specific to the kind of car it’s
associated with. Alternatively, we could maintain the association
of the get_range﴾﴿ method with the battery but pass it a
parameter such as car_model. The get_range﴾﴿ method would
then report a range based on the battery size and car model.



This brings you to an interesting point in your growth as a
programmer. When you wrestle with questions like these, you’re
thinking at a higher logical level rather than a syntax‐focused
level. You’re thinking not about Python, but about how to
represent the real world in code. When you reach this point, you’ll
realize there are often no right or wrong approaches to modeling
real‐world situations. Some approaches are more efficient than
others, but it takes practice to find the most efficient
representations. If your code is working as you want it to, you’re
doing well! Don’t be discouraged if you find you’re ripping apart
your classes and rewriting them several times using different
approaches. In the quest to write accurate, effcient code,
everyone goes through this process.



TRY IT YURDSELF

9‐6 Ice Cream Stand: An ice cream stand is a specific kind of
restaurant Write a class called IceCreamStand that inherits from
the Restaurant class you wrote in Exercise 9‐1 ﴾page 166﴿ or
Exercise 9‐4 ﴾page 171﴿. Either version of the class will work; just
pick the one you like better. Add an attribute called flavors that
stores a list of ice cream flavors. Write a method that displays
these flavors. Create an instance of IceCreamStand, and call this
method.

9‐7 Admin: An administrator is a special kind of user. Write a class
called Admin that inherits from the User class you wrote in
Exercise 9‐3 ﴾page 166﴿ or Exercise 9‐5 ﴾page 171﴿. Add an
attribute, privileges, that stores a list of strings like "can add
post", "can delete post", "can ban user", and so on. Write a
method called show_privileges﴾﴿ that lists the administrator’s set
of privileges. Create an instance of Admin, and call your method.



9‐8 Privileges: Write a separate Privileges class. The class should
have one attribute, privileges, that stores a list of strings as
described in Exercise 9‐7. Move the show_privileges﴾﴿ method to
this class. Make a Privileges instance as an attribute in the Admin
class. Create a new instance of Admin and use your method to
show its privileges.

Battery Upgrade: Use the final version of electric_car.py from this
section. Add a method to the Battery class called
upgrade_battery﴾﴿. This method should check the battery size and
set the capacity to 85 if it isn’t already. Make an electric car with a
default battery size, call get_range﴾﴿ once, and then call
get_range﴾﴿ a second time after upgrading the battery. You
should see an increase in the car’s range.



9.4 Importing Classes

As you add more functionality to your classes, your files can get
long, even when you use inheritance properly. In keeping with the
overall philosophy of Python, you’ll want to keep your files as
uncluttered as possible. To help, Python lets you store classes in
modules and then import the classes you need into your main
program.

9.4.1 Importing a Single Class

Let’s create a module containing just the Car class.



car.py

class Car():
   def __init__(self, make, model, year):
     self.make = make
     self.model = model
     self.year = year
     self.odometer_reading = 0
   def get_descriptive_name(self):
     long_name = str(self.year) + ' ' + self.make + ' '
                                             + self.model
     return long_name.title()
   def read_odometer(self):
     print("This car has " + str(self.odometer_reading) + 
                                            " miles on it.")
   def update_odometer(self, mileage):
     """Return a neatly formatted descriptive name."""
     if mileage >= self.odometer_reading:
        self.odometer_reading = mileage
     else:
        print("You can't roll back an odometer!")
   def increment_odometer(self, miles):
     """Add the given amount to the odometer reading."""
     self.odometer_reading += miles

http://car.py/


Now we make a separate file called my_car.py. This file will import
the Car class and then create an instance from that class:

my_car.py

from car import Car

my_new_car = Car('audi', 'a4', 2016)
print(my_new_car.get_descriptive_name())

my_new_car.odometer_reading = 23
my_new_car.read_odometer()

The import statement at tells Python to open the car module and
import the class Car. Now we can use the Car class as if it were
defined in this file. The output is the same as we saw earlier:

2016 Audi A4
This car has 23 miles on it.



9.4.2 Storing Multiple Classes in a Module

You can store as many classes as you need in a single module,
although each class in a module should be related somehow. The
classes Battery and ElectricCar both help represent cars, so let’s
add them to the module car.py:

http://car.py/


class Car():
   ‐‐snip‐‐
class Battery():
   def __init__(self, battery_size=60):
      self.battery_size = battery_size
   def describe_battery(self):
      print("This car has a " + str(self.battery_size) + 
                                          "‐kWh battery.")
   def get_range(self):
      if self.battery_size == 70:
         range = 240
      elif self.battery_size == 85:
         range = 270
      message = "This car can go approximately " + str(range)
      message += " miles on a full charge."
      print(message)
class ElectricCar(Car):
   def __init__(self, make, model, year):
      super().__init__(make, model, year)
      self.battery = Battery()



Now we can make a new file called my_electric_car.py, import the
ElectricCar class, and make an electric car:

from car import ElectricCar

my_tesla = ElectricCar('tesla', 'model s', 2016)
print(my_tesla.get_descriptive_name())

my_tesla.battery.describe_battery()
my_tesla.battery.get_range()

This has the same output we saw earlier, even though most of the
logic is hidden away in a module:

2016 Tesla Model S
This car has a 70‐kWh battery.
This car can go approximately 240 miles on a full charge.



9.4.3 Importing Multiple Classes from a Module

You can import as many classes as you need into a program file. If
we want to make a regular car and an electric car in the same file,
we need to import both classes, Car and ElectricCar:

my_cars.py

❶ from car import Car, ElectricCar

❷ my_beetle = Car('volkswagen', 'beetle', 2016)
  print(my_beetle.get_descriptive_name())
  
❸ my_tesla = ElectricCar('tesla', 'roadster', 2016)
  print(my_tesla.get_descriptive_name())

You import multiple classes from a module by separating each
class with a comma ❶.Once you’ve imported the necessary
classes, you’re free to make as many instances of each class as
you need.In this example we make a regular Volkswagen Beetle at
❷and an electric Tesla Roadster at ❸：

2016 Volkswagen Beetle
2016 Tesla Roadster

http://need.in/


9.4.4 Importing an Entire Module

You can also import an entire module and then access the classes
you need using dot notation. This approach is simple and results
in code that is easy to read. Because every call that creates an
instance of a class includes the module name, you won’t have
naming conflicts with any names used in the current file.

Here’s what it looks like to import the entire car module and then
create a regular car and an electric car:

❶ import car

❷ my_beetle = car.Car('volkswagen', 'beetle', 2016)
  print(my_beetle.get_descriptive_name())
  
❸ my_tesla = car.ElectricCar('tesla', 'roadster', 2016)
  print(my_tesla.get_descriptive_name())



At❶ we import the entire car module. We then access the classes
we need through the module_name.class_name syntax. At❷ we
again create a Volkswagen Beetle, and at ❸we create a Tesla
Roadster.



9.4.5 Importing All Classes from a Module

You can import every class from a module using the following
syntax:

from module_name import *

This method is not recommended for two reasons. First, it’s
helpful to be able to read the import statements at the top of a
file and get a clear sense of which classes a program uses. With
this approach it’s unclear which classes you’re using from the
module. This approach can also lead to confusion with names in
the file. If you accidentally import a class with the same name as
something else in your program file, you can create errors that
are hard to diagnose. I show this here because even though it’s
not a recommended approach, you’re likely to see it in other
people’s code.



If you need to import many classes from a module, you’re better
off importing the entire module and using the
module_name.class_name syntax.You won’t see all the classes
used at the top of the file, but you’ll see clearly where the module
is used in the program. You’ll also avoid the potential naming
conflicts that can arise when you import every class in a modul.



9.4.6 Importing a Module into a Module

Sometimes you’ll want to spread out your classes over several
modules to keep any one file from growing too large and avoid
storing unrelated classes in the same module. When you store
your classes in several modules, you may find that a class in one
module depends on a class in another module. When this
happens, you can import the required class into the first module.



For example, let’s store the Car class in one module and the
ElectricCar and Battery classes in a separate module. We’ll make a
new module called electric_car.py—replacing the electric_car.py
file we created earlier—and copy just the Battery and ElectricCar
classes into this file:

electric_car.py

❶ from car import Car
  class Battery():
     ‐‐snip‐‐
  class ElectricCar(Car):
     ‐‐snip‐‐

The class ElectricCar needs access to its parent class Car, so we
import Car directly into the module at❶.



Now we can import from each module separately and create
whatever kind of car we need:

❶ from car import Car
  from electric_car import ElectricCar
  
  my_beetle = Car('volkswagen', 'beetle', 2016)
  print(my_beetle.get_descriptive_name())
  
  my_tesla = ElectricCar('tesla', 'roadster', 2016)
  print(my_tesla.get_descriptive_name())

At❶we import Car from its module, and ElectricCar from its
module. We then create one regular car and one electric car. Both
kinds of cars are created correctly:

2016 Volkswagen Beetle
2016 Tesla Roadster



9.4.7 Finding Your Own Workflow

As you can see, Python gives you many options for how to
structure code in a large project. It’s important to know all these
possibilities so you can determine the best ways to organize your
projects as well as understand other people’s projects.

When you’re starting out, keep your code structure simple. Try
doing everything in one file and moving your classes to
separate modules once everything is working. If you like how
modules and files interact, try storing your classes in modules
when you start a project. Find an approach that lets you write
code that works, and go from there.



TRY IT YOURSELF

9‐10 Imported Restaurant: Using your latest Restaurant class,
store it in a module Make a separate file that imports Restaurant.
Make a Restaurant instance, and call one of Restaurant’s methods
to show that the import statement is working properly.

9‐11 Imported Admin: Start with your work from Exercise 9‐8
﴾page 178﴿. Store the classes User, Privileges, and Admin in one
module. Create a separate file, make an Admin instance, and call
show_privileges﴾﴿ to show that everything is working correctly.

9‐12 Multiple Modules: Store the User class in one module, and
store the Privileges and Admin classes in a separate module. In a
separate file, create an Admin instance and call show_privileges﴾﴿
to show that everything is still working correctly.



9.5 The Python Standard Library

The Python standard library is a set of modules included with
every Python installation. You can use any function or class in the
standard library by including a simple import statement at the
top of your file. Let’s look at one class, OrderedDict, from the
module collections.

Dictionaries allow you to connect pieces of information, but they
don’t keep track of the order in which you add key‐value pairs. If
you’re creating a dictionary and want to keep track of the order
in which key‐value pairs are added, you can use the OrderedDict
class from the collections module.Instances of the OrderedDict
class behave almost exactly like dictionaries except they keep
track of the order in which key‐value pairs are added.

Let’s revisit the favorite_languages.py example from Chapter 6.
This time we’ll keep track of the order in which people respond to
the poll:



❶ from collections import OrderedDict
❷ favorite_languages = OrderedDict()
❸ favorite_languages['jen'] = 'python'
  favorite_languages['sarah'] = 'c'
  favorite_languages['edward'] = 'ruby'
  favorite_languages['phil'] = 'python'
❹ for name, language in favorite_languages.items():
      print(name.title() + "'s favorite language is " +
                                 language.title() + ".")

We begin by importing the OrderedDict class from the module
collections at❶ .At❷we create an instance of the OrderedDict
class and store this instance in favorite_languages.Notice there
are no curly brackets; the call to OrderedDict﴾﴿ creates an empty
ordered dictionary for us and stores it in favorite_languages. We
then add each name and language to favorite_languages one at a
time❸.Now when we loop through favorite_languages at❹, we
know we’ll always get responses back in the order they were
added:



Jen's favorite language is Python.
Sarah's favorite language is C.
Edward's favorite language is Ruby.
Phil's favorite language is Python.



TRY IT YOUSELF

9‐13 OrderedDict Rewrite: Start with Exercise 6‐4 ﴾page 108﴿,
where you used a standard dictionary to represent a glossary.
Rewrite the program using the OrderedDict class and make sure
the order of the output matches the order in which key‐value
pairs were added to the dictionary

9‐14 Dice: The module random contains functions that generate
random numbers in a variety of ways. The function randint﴾﴿
returns an integer in the range you provide The following code
returns a number between 1 and 6:

from random import randint
x = randint(1, 6)

Make a class Die with one attribute called sides, which has a
default value of 6. Write a method called roll_die﴾﴿ that prints a
random number between 1 and the number of sides the die has
Make a 6‐sided die and roll it 10 times.Make a 10‐sided die and a
20‐sided die Roll each die 10 times.



9‐15 Python Module of the Week: One excellent resource for
exploring the Python standard library is a site called Python
Module of the Week. Go to http://pymotw.com/ and look at the
table of contents. Find a module that looks interesting to you and
read about it, or explore the documentation of the collections
and random modules.

http://pymotw.com/


9.6 Styling Classes

Class names should be written in CamelCaps. To do this,
capitalize the first letter of each word in the name, and don’t
use underscores. Instance and module names should be
written in lowercase with underscores between words.
Every class should have a docstring immediately following the
class definition. The docstring should be a brief description of
what the class does, and you should follow the same
formatting conventions you used for writing docstrings in
functions. Each module should also have a docstring
describing what the classes in a module can be used for.



You can use blank lines to organize code, but don’t use them
excessively. Within a class you can use one blank line between
methods, and within a module you can use two blank lines to
separate classes.
If you need to import a module from the standard library and a
module that you wrote, place the import statement for the
standard library module first. Then add a blank line and the
import statement for the module you wrote. In programs with
multiple import statements, this convention makes it easier to
see where the different modules used in the program come
from.



9.7 Summary

In this chapter you learned how to write your own classes. You
learned how to store information in a class using attributes and
how to write methods that give your classes the behavior they
need.You learned to write init﴾﴿ methods that create instances
from your classes with exactly the attributes you want. You saw
how to modify the attributes of an instance directly and through
methods. You learned that inheritance can simplify the creation
of classes that are related to each other, and you learned to use
instances of one class as attributes in another class to keep each
class simple.

You saw how storing classes in modules and importing classes
you need into the files where they’ll be used can keep your
projects organized. You started learning about the Python
standard library, and you saw an example based on the
OrderedDict class from the collections module. Finally, you
learned to style your classes using Python conventions.


