Chapter4 Working With Lists

e 4.1 Looping Through an Entire List
e 4.2 Avoiding Indentation Errors

e 4.3 Making Numerical Lists

e 4.4 Working with Part of a List

e 45 Tuples

e 4.6 Styling Your Code

e 47 Summary

4.1 Looping Through an Entire List

e You'll often want to run through all entries in a list, performing
the same task with each item. For example, in a game you
might want to move every element on the screen by the same
amount, or in a list of numbers you might want to perform the
same statistical operation on every element. Or perhaps you'll
want to display each headline from a list of articles on a
website. When you want to do the same action with every item
in a list, you can use Python's for loop.

e |et's say we have a list of magicians’ names, and we want to
print out each name in the list. We could do this by retrieving
each name from the list individually, but this approach could
cause several problems.

e For one, it would be repetitive to do this with a long list of
names. Also, we'd have to change our code each time the list's
length changed. A for loop avoids both of these issues by
letting Python manage these issues internally.

Let's use a for loop to print out each name in a list of
magicians:

magicians.py

o

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
print(magician)

We begin by defining a list at @), just as we did in Chapter 3.
At @), we define a for loop. This line tells Python to pull a name
from the list magicians, and store it in the variable magician. At
€ e tell Python to print the name that was just stored in
magician.Python then repeats lines @ and €, once for each
name in the list.

http://magicians.py/

e |t might help to read this code as “For every magician in the list
of magicians, print the magician’s name.” The output is a
simple printout of each name in the list:

alice
david
carolina

4.1.1 A Closer Look at Looping

e The concept of looping is important because it's one of the
most common ways a computer automates repetitive tasks. For

example, in a simple loop like we used in magicians.py, Python
initially reads the first line of the loop:

‘ for magician in magicians: |

e This line tells Python to retrieve the first value from the list

magicians and store it in the variable magician. This first value
is 'alice'. Python then reads the next line:

‘ print(magician) |

http://magicians.py/

e Python prints the current value of magician, which is still 'alice’.
Because the list contains more values, Python returns to the
first line of the loop:

for magician in magicians:

e Python retrieves the next name in the list, 'david’, and stores
that value in magician. Python then executes the line:

print(magician)

e Python prints the current value of magician again, which is now
'david’. Python repeats the entire loop once more with the last
value in the list, ‘carolina’. Because no more values are in the
list, Python moves on to the next line in the program. In this
case nothing comes after the for loop, so the program simply
ends.

e When you're using loops for the first time, keep in mind that
the set of steps is repeated once for each item in the list, no
matter how many items are in the list. If you have a million
items in your list, Python repeats these steps a million times—
and usually very quickly.

e Also keep in mind when writing your own for loops that you
can choose any name you want for the temporary variable that
holds each value in the list. However, it's helpful to choose a
meaningful name that represents a single item from the list.

For example, here's a good way to start a for loop for a list of
cats, a list of dogs, and a general list of items:

for cat in cats:
for dog in dogs:
for item in list of items:

e These naming conventions can help you follow the action
being done on each item within a for loop. Using singular and
plural names can help you identify whether a section of code is
working with a single element from the list or the entire list.

4.1.2 Doing More Work Within a for Loop

e You can do just about anything with each item in a for loop.
Let's build on the previous example by printing a message to
each magician, telling them that they performed a great trick:

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
® print(magician.title()+", that was a great trick!")

e The only difference in this code is at @) where we compose a
message to each magician, starting with that magician’s name.
The first time through the loop the value of magician is ‘alice’,
so Python starts the first message with the name 'Alice'. The
second time through the message will begin with ‘David’, and
the third time through the message will begin with 'Carolina’.

e |Let's add a second line to our message, telling each magician
that we're looking forward to their next trick:

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
print(magician.title()+ ", that was a great trick!")
® print("I can't wait to see your next trick, " +
—————— magician.title() + ".\n")

e Because we have indented both print statements, each line will
be executed once for every magician in the list. The newline
("\n") in the second @ inserts a blank line after each pass
through the loop. This creates a set of messages that are neatly
grouped for each person in the list:

Alice, that was a great trick!
I can't wait to see your next trick, Alice.

David, that was a great trick!
I can't wait to see your next trick, David.

Carolina, that was a great trick!
I can't wait to see your next trick, Carolina.

e You can use as many lines as you like in your for loops. In
practice you'll often find it useful to do a number of different
operations with each item in a list when you use a for loop.

4.1.3 Doing Something After a for Loop

e What happens once a for loop has finished executing? Usually,
you'll want to summarize a block of output or move on to
other work that your program must accomplish.

e Any lines of code after the for loop that are not indented are
executed once without repetition.

e Let's write a thank you to the group of magicians as a whole,
thanking them for putting on an excellent show. To display this
group message after all of the individual messages have been
printed, we place the thank you message after the for loop

without indentation:

magicians = ['alice', 'david', 'carolina']

for magician in magicians:
print(magician.title()+", that was a great trick!")
print("I can't wait to see your next trick, " +
------ magician.title() + ".\n")

® print("Thank you, everyone. That was a great magic
------ show!")

e The first two print statements are repeated once for each
magician in the list, as you saw earlier. However, because the
line at u is not indented, it's printed only once:

Alice, that was a great trick!
I can't wait to see your next trick, Alice.

David, that was a great trick!
I can't wait to see your next trick, David.

Carolina, that was a great trick!
I can't wait to see your next trick, Carolina.

Thank you, everyone. That was a great magic show!

e Working with data using a for loop is a great way to perform
overall operations on a data set. For example, you might use a
for loop to initialize the game: traversing the character list and
displaying the character to the screen; add an unindented code
block after the loop to display a Play Now button.

4.2 Avoiding Indentation Errors

e Python uses indentation to determine when one line of code is
connected to the line above it. Python’s use of indentation
makes code very easy to read. In longer Python programs,
you'll notice blocks of code indented at a few different levels.
These indentation levels help you gain a general sense of the
overall program'’s organization.

e As you begin to write code, you'll need to watch for a few
common indentation errors. For example, people sometimes
indent blocks of code that don’t need to be indented.Seeing
examples of these errors now will help you avoid them and
correct them when they do appear in your own programs.

e Let's examine some of the more common indentation errors.

4.2.1 Forgetting to Indent

e Always indent the line after the for statement in a loop. If you
forget, Python will remind you:

® magicians.py

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
® print(magician)

http://magicians.py/

e The print statement at @) should be indented, but it's not.
When Python expects an indented block and doesn’t find one,
it lets you know which line it had a problem with.

File "magicians.py", line 3
print(magician)

N

IndentationError: expected an indented block

e You can usually resolve this kind of indentation error by
indenting the line or lines immediately after the for statement.

4.2.2 Forgetting to Indent Additional Lines

e Sometimes your loop will run without any errors but won't
produce the expected result. This can happen when you're
trying to do several tasks in a loop and you forget to indent
some of its lines.

e For example, this is what happens when we forget to indent
the second line in the loop that tells each magician we're
looking forward to their next trick:

magicians = ['alice', 'david', 'carolina']
for magician in magicians:
print(magician.title()+",that was a great trick!")

® print("I can't wait to see your next trick, +
—————— magician.title() + ".\n")

e The print statement at @) is supposed to be indented, but
because Python finds at least one indented line after the for
statement, it doesn’t report an error. As a result, the first print
statement is executed once for each name in the list because it
Is indented. The second print statement is not indented, so it is
executed only once after the loop has finished running.Because
the final value of magician is ‘carolina’, she is the only one who
receives the “looking forward to the next trick” message:

Alice, that was a great trick!

David, that was a great trick!

Carolina, that was a great trick!

I can't wait to see your next trick, Carolina.

e This is a logical error. The syntax is valid Python code, but the
code does not produce the desired result because a problem
occurs in its logic. If you expect to see a certain actionr
epeated once for each item in a list and it's executed only
once, determine whether you need to simply indent a line or a
group of lines.

4.2.3 Indenting Unnecessarily

e |f you accidentally indent a line that doesn’t need to be
indented, Python informs you about the unexpected indent:

message = "Hello Python world!"
oprint(message)

e We don't need to indent the print statement at @) , because it
doesn’t belong to the line above it; hence, Python reports that
error:

File "hello world.py", line 2
print(message)

IndentationError: unexpected indent

e You can avoid unexpected indentation errors by indenting only
when you have a specific reason to do so. In the programs
you're writing at this point, the only lines you should indent are
the actions you want to repeat for each item in a for loop.

4.2.4 Indenting Unnecessarily After the Loop

e If you accidentally indent code that should run after a loop has
finished, that code will be repeated once for each item in the
list. Sometimes this prompts Python to report an error, but
often you'll receive a simple logical error.

e For example, let's see what happens when we accidentally
indent the line that thanked the magicians as a group for
putting on a good show:

magicians = ['alice', 'david', 'carolina']

for magician in magicians:
print(magician.title()+ ", that was a great trick!")
print("I can't wait to see your next trick, " +
—————— magician.title() + ".\n")

® print("Thank you everyone, that was a great magic
—————— show!")

e Because the line at @) is indented, it's printed once for each
person in the list, as you can see at @ :

Alice, that was a great trick!
I can't wait to see your next trick, Alice.

® Thank you everyone, that was a great magic show!
David, that was a great trick!
I can't wait to see your next trick, David.

® Thank you everyone, that was a great magic show!
Carolina, that was a great trick!

I can't wait to see your next trick, Carolina.

® Thank you everyone, that was a great magic show!

e This is another logical error. Because Python doesn’t know
what you're trying to accomplish with your code, it will run all
code that is written in valid syntax. If an action is repeated
many times when it should be executed only once, determine
whether you just need to unindent the code for that action.

4.2.5 Forgetting the Colon

e The colon at the end of a for statement tells Python to
interpret the next line as the start of a loop.

magicians = ['alice', 'david', 'carolina']
® for magician in magicians
print(magician)

e If you accidentally forget the colon, as shown at @),you'll get a
syntax error because Python doesn’t know what you're trying
to do.Although this is an easy error to fix, it's not always an
easy error to find. Such errors are difficult to find because we
often just see what we expect to see.

Try It Yourself

4-1 Pizzas: Think of at least three kinds of your favorite pizza. Store
these pizza names in a list, and then use a for loop to print the
name of each pizza.

e Modify your for loop to print a sentence using the name of the
pizza instead of printing just the name of the pizza. For each
pizza you should have one line of output containing a simple
statement like | like pepperoni pizza.

e Add a line at the end of your program, outside the for loop,
that states how much you like pizza. The output should consist
of three or more lines about the kinds of pizza you like and
then an additional sentence, such as | really love pizza!

4-2 Animals: Think of at least three different animals that have a
common characteristic. Store the names of these animals in a list,
and then use a for loop to print out the name of each animal.

e Modify your program to print a statement about each animal,
such as A dog would make a great pet.

e Add a line at the end of your program stating what these
animals have in common. You could print a sentence such as
Any of these animals would make a great pet!

4.3 Making Numerical Lists

e Many reasons exist to store a set of numbers. For example,
you'll need to keep track of the positions of each character in a
game, and you might want to keep track of a player’s high
scores as well. In data visualizations, you'll almost always work
with sets of numbers, such as temperatures, distances,
population sizes, or latitude and longitude values, among
other types of numerical sets.

e Lists are ideal for storing sets of numbers, and Python provides
a number of tools to help you work efficiently with lists of
numbers. Once you understand how to use these tools
effectively, your code will work well even when your lists
contain millions of items.

4.3.1 Using the range() Function

e Python's range() function makes it easy to generate a series of
numbers. For example, you can use the range() function to
print a series of numbers like this:

* numbers.py

for value in range(1,5):
print(value)

http://numbers.py/

e Although this code looks like it should print the numbers from
1to 5, it doesn't print the number 5:

A wNnPR

e |n this example, range() prints only the numbers 1 through 4.
This is another result of the off-by-one behavior you'll see
often in programming languages. The range() function causes
Python to start counting at the first value you give it, and it
stops when it reaches the second value you provide. Because it
stops at that second value, the output never contains the end
value, which would have been 5 in this case.

e To print the numbers from 1 to 5, you would use range(1,6):

for value in range(1,6):
print(value)

e This time the output starts at 1 and ends at 5:

Ui WN R

e |f your output is different than what you expect when you're
using range(), try adjusting your end value by 1.

4.3.2 Using range() to Make a List of Numbers

e If you want to make a list of numbers, you can convert the
results of range() directly into a list using the list() function.
When you wrap list() around a call to the range() function, the
output will be a list of numbers.

e |n the example in the previous section, we simply printed out a
series of numbers. We can use list() to convert that same set of
numbers into a list:

numbers = list(range(1,6))
print(numbers)

e And this is the result:

[1, 2, 3, 4, 5]

e We can also use the range() function to tell Python to skip

numbers in a given range. For example, here’'s how we would
list the even numbers between 1 and 10::

e even_numbers.py

even_numbers = list(range(2,11,2))
print(even_numbers)

e |n this example, the range() function starts with the value 2 and
then adds 2 to that value. It adds 2 repeatedly until it reaches
or passes the end value, 11, and produces this result:

[2, 4, 6, 8, 10]

You can create almost any set of numbers you want to using
the range()function. For example, consider how you might
make a list of the first 10 square numbers (that is, the square of
each integer from 1 through 10). In Python, two asterisks (**)
represent exponents. Here's how you might put the first 10
square numbers into a list:

squares.py

squares = []
for value in range(1,11):

square = value**2
squares.append(square)
print(squares)

http://squares.py/

e We start with an empty list called squares at @). At @, we tell
Python to loop through each value from 1 to 10 using the
range() function. Inside the loop, the current value is raised to
the second power and stored in the variable square at €). At
O, cach new value of square is appended to the list squares.
Finally, when the loop has finished running, the list of squares

is printed at @:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

e To write this code more concisely, omit the temporary variable
square and append each new value directly to the list:

squares = []
for value in range(1,11):
® squares.append(value**2)

print(squares)

e The code at @) does the same work as the lines at € and @
in squares.py .Each value in the loop is raised to the second
power and then immediately appended to the list of squares.

e You can use either of these two approaches when you're
making more complex lists. Sometimes using a temporary
variable makes your code easier to read; other times it makes
the code unnecessarily long. Focus first on writing code that
you understand clearly, which does what you want it to do.
Then look for more efficient approaches as you review your

code.

http://squares.py/

4.3.3 Simple Statistics with a List of Numbers

e A few Python functions are specific to lists of numbers. For
example, you can easily find the minimum, maximum, and sum

of a list of numbers:

>>> digits = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
>>> min(digits)

%)

>>> max(digits)

9

>>> sum(digits)

45

4.3.4 List Comprehensions

e The approach described earlier for generating the list squares
consisted of using three or four lines of code. A list
comprehension allows you to generate this same list in just
one line of code. A list comprehension combines the for loop
and the creation of new elements into one line, and
automatically appends each new element. List comprehensions
are not always presented to beginners, but | have included
them here because you'll most likely see them as soon as you
start looking at other people’s code.

e The following example builds the same list of square numbers
you saw earlier but uses a list comprehension:

® squares.py

squares = [value**2 for value in range(1,11)]
print(squares)

http://squares.py/

e To use this syntax, begin with a descriptive name for the list,
such as squares. Next, open a set of square brackets and define
the expression for the values you want to store in the new list.
In this example the expression is value**2, which raises the
value to the second power.

e Then, write a for loop to generate the numbers you want to
feed into the expression, and close the square brackets. The for
loop in this example is for value in range(1,11), which feeds the
values 1 through 10 into the expression value**2. Notice that
no colon is used at the end of the for statement.

e The result is the same list of square numbers you saw earlier :

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

e |t takes practice to write your own list comprehensions.When
you're writing three or four lines of code to generate lists and
it begins to feel repetitive, consider writing your own list
comprehensions.

Try It Yourself

e 4-3 Counting to Twenty: Use a for loop to print the numbers
from 1 to 20, inclusive.

e 4-4 One Million: Make a list of the numbers from one to one
million, and then use a for loop to print the numbers. (If the
output is taking too long, stop it by pressing ctrl-C or by
closing the output window.)

e 4-5 Summing a Million: Make a list of the numbers from one to
one million, and then use min() and max() to make sure your
list actually starts at one and ends at one million. Also, use the
sum() function to see how quickly Python can add a million
numbers.

4-6 Odd Numbers: Use the third argument of the range()
function to make a list of the odd numbers from 1 to 20. Use a
for loop to print each number.

4-7 Odd Numbers: Use the third argument of the range()
function to make a list of the odd numbers from 1 to 20. Use a
for loop to print each number.

4-8 Cubes: A number raised to the third power is called a cube.
For example, the cube of 2 is written as 2**3 in Python. Make a
list of the first 10 cubes (that is, the cube of each integer from
1 through 10), and use a for loop to print out the value of each
cube.

4-9 Cube Comprehension: Use a list comprehension to
generate a list of the first 10 cubes.

4.4 Working with Part of a List

e |n Chapter 3 you learned how to access single elements in a
list, and in this chapter you've been learning how to work
through all the elements in a list. You can also work with a
specific group of items in a list, which Python calls a slice.

4.4.1 Slicing a List

e To make a slice, you specify the index of the first and last
elements you want to work with. As with the range() function,
Python stops one item before the second index you specify. To
output the first three elements in a list, you would request
indices 0 through 3, which would return elements 0, 1, and 2.

e The following example involves a list of players on a team:

e players.py

players = ['charles', 'martina', 'michael’,
------ "florence', 'eli']
® print(players[0:3])

http://players.py/

e The code at @ prints a slice of this list, which includes just the
first three players. The output retains the structure of the list
and includes the first three players in the list:

['charles’', 'martina', 'michael']

e You can generate any subset of a list. For example, if you want
the second, third, and fourth items in a list, you would start the
slice at index 1 and end at index 4:

players = ['charles', 'martina', 'michael’,
----- ‘florence', 'eli']
print(players[1:4])

e This time the slice starts with 'martina' and ends with 'florence":

['martina’, 'michael', 'florence']

e |f you omit the first index in a slice, Python automatically starts
your slice at the beginning of the list:

players = ['charles', 'martina', 'michael’,
—————— "florence', 'eli']
print(players[:4])

e Without a starting index, Python starts at the beginning of the
list:

['charles', 'martina', 'michael', 'florence']

e A similar syntax works if you want a slice that includes the end
of a list. For example, if you want all items from the third item

through the last item, you can start with index 2 and omit the
second index:

players = ['charles', 'martina', 'michael’,
—————— "florence', 'eli']
print(players[2:])

e Python returns all items from the third item through the end of
the list:

['michael’', 'florence', 'eli']

e This syntax allows you to output all of the elements from any
point in your list to the end regardless of the length of the list.
Recall that a negative index returns an element a certain
distance from the end of a list; therefore, you can output any
slice from the end of a list. For example, if we want to output
the last three players on the roster, we can use the slice
players[-3:]:

players = ['charles', 'martina', 'michael’,
—————— "florence', 'eli']
print(players[-3:])

e This prints the names of the last three players and would
continue to work as the list of players changes in size.

4.4.2 Looping Through a Slice

e You can use a slice in a for loop if you want to loop through a
subset of the elements in a list. In the next example we loop

through the first three players and print their names as part of
a simple roster :

players = ['charles', 'martina', 'michael',
------ ‘florence', 'eli']

print("Here are the first three players on my team:")
® for player in players[:3]:
print(player.title())

e Instead of looping through the entire list of players at @) ,
Python loops through only the first three names:

Here are the first three players on my team:
Charles
Martina
Michael

e Slices are very useful in a number of situations. For instance,
when you're creating a game, you could add a player’s final
score to a list every time that player finishes playing. You could
then get a player’s top three scores by sorting the list in
decreasing order and taking a slice that includes just the first
three scores.When you're working with data, you can use slices
to process your data in chunks of a specific size.

4.4.3 Copying a List

e Often, you'll want to start with an existing list and make an
entirely new list based on the first one. Let's explore how
copying a list works and examine one situation in which
copying a list is useful.

e To copy a list, you can make a slice that includes the entire
original list by omitting the first index and the second index
(D). This tells Python to make a slice that starts at the first item
and ends with the last item, producing a copy of the entire list.

e For example, imagine we have a list of our favorite foods and
want to make a separate list of foods that a friend likes. This
friend likes everything in our list so far, so we can create their
list by copying ours:

e foods.py

® my foods = ['pizza', 'falafel', 'carrot cake']
® friend foods = my foods]:]

print("My favorite foods are:")
print(my foods)

print("\nMy friend's favorite foods are:")
print(friend_foods)

o At @) we make a list of the foods we like called my_foods. At
@ we make a new list called friend_foods. We make a copy of
my_foods by asking for a slice of my_foods without specifying
any indices and store the copy in friend_foods.

http://foods.py/

e When we print each list, we see that they both contain the
same foods:

My favorite foods are:
['pizza', 'falafel', 'carrot cake']

My friend's favorite foods are:
['pizza', 'falafel', 'carrot cake']

e To prove that we actually have two separate lists, we'll add a
new food to each list and show that each list keeps track of the
appropriate person'’s favorite foods:

my foods = ['pizza', 'falafel', 'carrot cake']
® friend foods = my foods|:]
® my foods.append('cannoli')
® friend foods.append('ice cream')
print("My favorite foods are:")
print(my foods)
print("\nMy friend's favorite foods are:")
print(friend_foods)

e At @ we copy the original items in my_foods to the new list
friend_foods, as we did in the previous example. Next, we add
a new food to each list: at @ we add 'cannoli' to my_foods,
and at €) we add 'ice cream' to friend_foods. We then print
the two lists to see whether each of these foods is in the
appropriate list.

@ My favorite foods are:
['pizza', 'falafel', 'carrot cake', 'cannoli']

® My friend's favorite foods are:
['pizza', 'falafel', 'carrot cake', 'ice cream']

e The output at @ shows that 'cannoli' now appears in our list
of favorite foods but 'ice cream' doesn't. At @ we can see that
'ice cream' now appears in our friend’s list but ‘cannoli' doesn't.

If we had simply set friend_foods equal to my_foods, we would
not produce two separate lists.

e For example, here's what happens when you try to copy a list
without using a slice:

my foods = ['pizza', 'falafel', 'carrot cake']

This doesn't work:
® friend foods = my foods

my_ foods.append('cannoli’)
friend_foods.append('ice cream')

print("My favorite foods are:")
print(my_foods)

print("\nMy friend's favorite foods are:")
print(friend_foods)

e Instead of storing a copy of my_foods in friend_foods at @) ,
we set friend_foods equal to my_foods.This syntax actually tells
Python to connect the new variable friend_foods to the list that
is already contained in my_foods, so now both variables point
to the same list. As a result, when we add 'cannoli’ to
my_foods, it will also appear in friend_foods. Likewise 'ice
cream' will appear in both lists, even though it appears to be
added only to friend_foods.

e The output shows that both lists are the same now, which is
not what we wanted:

My favorite foods are:
['pizza', 'falafel', 'carrot cake', 'cannoli',
------ 'ice cream']

My friend's favorite foods are:
['pizza', 'falafel', 'carrot cake', 'cannoli',
------ 'ice cream']

e NOTE : Don't worry about the details in this example for now.
Basically, if you're trying to work with a copy of a list and you
see unexpected behavior, make sure you are copying the list
using a slice, as we did in the first example.

Try It Yourself

4-10 Slices: Using one of the programs you wrote in this chapter,
add several lines to the end of the program that do the following:

e Print the message, “The first three items in the list are : ”, then
use a slice to print the first three items from that program’s list.

e Print the message, “Three items from the middle of the list
are:" , then use a slice to print three items from the middle of
the list.

e Print the message, “The last three items in the list are:” , then
use a slice to print the last three items in the list.

4-11 My Pizzas, Your Pizzas : Start with your program from the
Exercise 4-1. Make a copy of the list of pizzas, and call it
friend_pizzas . Then, do the following:

e Add a new pizza to the original list.
e Add a different pizza to the list friend_pizzas.

e Prove that you have two separate lists. Print the message, My
favorite pizzas are:, and then use a for loop to print the first
list. Print the message, My friend'’s favorite pizzas are:, and then
use a for loop to print the second list. Make sure each new
pizza is stored in the appropriate list.

4-12 More Loops: All versions of foods.py in this section have
avoided using for loops when printing to save space. Choose a
version of foods.py, and write two for loops to print each list of
foods.

http://foods.py/
http://foods.py/

4.5 Tuples

e Lists work well for storing sets of items that can change
throughout the life of a program. The ability to modify lists is
particularly important when you're working with a list of users
on a website or a list of characters in a game. However,
sometimes you'll want to create a list of items that cannot
change. Tuples allow you to do just that. Python refers to
values that cannot change as immutable, and an immutable list

Is called a tuple.

4.5.1 Defining a Tuple

e A tuple looks just like a list except you use parentheses instead
of square brackets. Once you define a tuple, you can access
individual elements by using each item's index, just as you
would for a list.

e For example, if we have a rectangle that should always be a
certain size, we can ensure that its size doesn't change by
putting the dimensions into a tuple:

e dimensions.py

® dimensions = (200, 50)
® print(dimensions[@])
print(dimensions[1])

http://dimensions.py/

e We define the tuple dimensions at) using parentheses
instead of square brackets. At @ we print each element in the

tuple individually, using the same syntax we've been using to
access elements in a list:

200
50

e |et's see what happens if we try to change one of the items in
the tuple dimensions:

dimensions = (200, 50)
® dimensions[@] = 250

e The code at @) tries to change the value of the first dimension,
but Python returns a type error. Basically, because we're trying
to alter a tuple, which can’t be done to that type of object,

Python tells us we can't assign a new value to an item in a
tuple:

Traceback (most recent call last):

File "dimensions.py", line 3, in <module>
dimensions[@] = 250

TypeError: "tuple'object does not support item assignmen

e This is beneficial because we want Python to raise an error

when a line of code tries to change the dimensions of the
rectangle.

4.5.2 Looping Through All Values in a Tuple

e You can loop over all the values in a tuple using a for loop, just
as you did with a list:

dimensions = (200, 50)
for dimension in dimensions:
print(dimension)

e Python returns all the elements in the tuple, just as it would for
a list:

200
50

4.5.3 Writing over a Tuple

e Although you cant modify a tuple, you can assign a new value
to a variable that holds a tuple. So if we wanted to change our
dimensions, we could redefine the entire tuple:

® dimensions = (200, 50)
print("Original dimensions:")
for dimension in dimensions:

print(dimension)

® dimensions = (400, 100)
® print("\nModified dimensions:")
for dimension in dimension

e The block at @) defines the original tuple and prints the initial
dimensions . At @ , we store a new tuple in the variable
dimensions. We then print the new dimensions at €. Python

doesn’t raise any errors this time, because overwriting a
variable is valid:

Original dimensions:
200

50

Modified dimensions:
400

100

e When compared with lists, tuples are simple data structures.
Use them when you want to store a set of values that should
not be changed throughout the life of a program.

Try It Yourself

4-13 Buffet: A buffet-style restaurant offers only five basic foods.
Think of five simple foods, and store them in a tuple.

e Use a for loop to print each food the restaurant offers.

e Try to modify one of the items, and make sure that Python
rejects the change.
e The restaurant changes its menu, replacing two of the items

with different foods. Add a block of code that rewrites the
tuple, and then use a for loop to print each of the items on the

revised menu.

4.6 Styling Your Code

 Now that you're writing longer programs, ideas about how to
style your code are worthwhile to know. Take the time to make
your code as easy as possible to read. Writing easy-to-read
code helps you keep track of what your programs are doing
and helps others understand your code as well.

e To ensure that the structure of the code written by everyone is
roughly the same, Python programmers follow some
formatting conventions. After learning to write neat Python,
you can understand the overall structure of Python code
written by others - as long as they follow the same guidelines
as you. To become a professional programmer, follow these
guidelines from now on to develop good habits.

4.6.1 The Style Guide

e When someone wants to make a change to the Python
language, they write a Python Enhancement Proposal (PEP).
One of the oldest PEPs is PEP 8, which instructs Python
programmers on how to style their code. PEP 8 is fairly lengthy,
but much of it relates to more complex coding structures than
what you've seen so far.

e The Python style guide was written with the understanding
that code is read more often than it is written. You'll write your
code once and then start reading it as you begin debugging.
When you add features to a program, you'll spend more time
reading your code.

e |f you have to choose between making your code easy to write
and easy to read, Python programmers will almost always
choose the latter.The following guidelines will help you write
clear code from the start.

4.6.2 Indentation

e PEP 8 recommends that you use four spaces per indentation
level. Using four spaces improves readability while leaving
room for multiple levels of indentation on each line.

e |n a word processing document, people often use tabs rather
than spaces to indent. This works well for word processing
documents, but the Python interpreter gets confused when
tabs are mixed with spaces. Every text editor provides a setting
that lets you use the tab key but then converts each tab to a
set number of spaces. You should definitely use your tab key,
but also make sure your editor is set to insert spaces rather
than tabs into your document.

e Mixing tabs and spaces in your file can cause problems that are
very difficult to diagnose. If you think you have a mix of tabs
and spaces, you can convert all tabs in a file to spaces in most
editors.

4.6.3 Line Length

e Many Python programmers recommend that each line should
be less than 80 characters. Historically, this guideline
developed because most computers could fit only 79
characters on a single line in a terminal window.

e Currently, people can fit much longer lines on their screens,
but other reasons exist to adhere to the 79-character standard
line length. Professional programmers often have several files
open on the same screen, and using the standard line length
allows them to see entire lines in two or three files that are
open side by side onscreen.

e PEP 8 also recommends that you limit all of your comments to
72 characters per line, because some of the tools that generate
automatic documentation for larger projects add formatting
characters at the beginning of each commented line.

e The PEP 8 guidelines for line length are not set in stone, and
some teams prefer a 99-character limit. Don’'t worry too much
about line length in your code as you're learning, but be aware
that people who are working collaboratively almost always
follow the PEP 8 guidelines. Most editors allow you to set up a

visual cue, usually a vertical line on your screen, that shows you
where these limits are.

e NOTE : Appendix B shows you how to configure your text
editor so it always inserts four spaces each time you press the
tab key and shows a vertical guideline to help you follow the
79-character limit.

4.6.4 Blank Lines

e To group parts of your program visually, use blank lines. You
should use blank lines to organize your files, but don’t do so
excessively. By following the examples provided in this book,
you should strike the right balance. For example, if you have
five lines of code that build a list, and then another three lines
that do something with that list, it's appropriate to place a
blank line between the two sections. However, you should not
place three or four blank lines between the two sections.

e Blank lines won't affect how your code runs, but they will affect
the readability of your code. The Python interpreter uses
horizontal indentation to interpret the meaning of your code,
but it disregards vertical spacing.

4.6.5 Other Style Guidelines

e PEP 8 has many additional styling recommendations, but most
of the guidelines refer to more complex programs than what
you're writing at this point. As you learn more complex Python
structures, I'll share the relevant parts of the PEP 8 guidelines.

Try It Yourself

4-14. PEP 8 : Look through the original PEP 8 style guide at
https://python.org/dev/peps/pep-0008/ . You won't use much of it
now, but it might be interesting to skim through it.

4-15. Code Review: Choose three of the programs you've written in
this chapter and modify each one to comply with PEP 8:

e Use four spaces for each indentation level. Set your text editor
to insert four spaces every time you press tab, if you haven't
already done so (see Appendix B for instructions on how to do
this)

e Use less than 80 characters on each line, and set your editor to
show a vertical guideline at the 80th character position.

e Don't use blank lines excessively in your program files.

https://python.org/dev/peps/pep-0008/

4.7 Summary

e |n this chapter you learned how to work efficiently with the
elements in a list. You learned how to work through a list using
a for loop. You learned to make simple numerical lists, as well
as a few operations you can perform on numerical lists. You
also learned about tuples, which provide a degree of
protection to a set of values that shouldn’t change, and how to
style your increasingly complex code to make it easy to read.

e |n Chapter 5, you'll learn to respond appropriately to different
conditions by using if statements. You'll learn to string
together relatively complex sets of conditional tests to respond
appropriately to exactly the kind of situation or information
you're looking for. You'll also learn to use if statements while
looping through a list to take specific actions with selected
elements from a list.

