
Chapter 3 INTRODUCING LISTS
3.1 What Is a List?

3.2 Changing,Adding,and Removing Elements

3.3 Organizing a List

3.4 Acoiding Index Errors When Working with Lists

3.5 Summary



3.1 What Is a List?
List：A list is a collection of items in a particular order. You can
make a list that includes the letters of the alphabet, the digits
from 0–9, or the names of all the people in your family. You can
put anything you want into a list, and the items in your list
don’t have to be related in any particular way. Because a list
usually contains more than one element, it’s a good idea to
make the name of your list plural, such as letters,digits,or
names .

In Python, square brackets ﴾ [] ﴿ indicate a list, and individual
elements in the list are separated by commas.



Here’s a simple example of a list that contains a few kinds of
bicycles:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles)



If you ask Python to print a list, Python returns its representation of
the list, including the square brackets:

['trek', 'cannondale', 'redline', 'specialized']



3.1.1 Accessing Elements in a List

Lists are ordered collections, so you can access any element in
a list by telling Python the position, or index, of the item
desired.

To access an element in a list, write the name of the list
followed by the index of the item enclosed in square brackets.
For example, let’s pull out the first bicycle in the list bicycles :

  bicycles = ['trek', 'cannondale', 'redline', 'specialized']
❶ print(bicycles[0])

The syntax for this is shown at ❶.



When we ask for a single item from a list, Python returns just
that element without square brackets or quotation marks:

trek



You can also use the string methods from Chapter 2 on any
element in a list. For example, you can format the element
'trek' more neatly by using the title﴾﴿ method:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[0].title())



3.1.2 Index Positions Start at 0, Not 1

Python considers the first item in a list to be at position 0, not
position 1.This is true of most programming languages, and
the reason has to do with how the list operations are
implemented at a lower level. If you’re receiving unexpected
results, determine whether you are making a simple off‐by‐one
error.
The second item in a list has an index of 1. Using this simple
counting system, you can get any element you want from a list
by subtracting one from its position in the list. For instance, to
access the fourth item in a list, you request the item at index 3.



The following asks for the bicycles at index 1 and index 3 :

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[1])
print(bicycles[3])



This code returns the second and fourth bicycles in the list:

cannondale
specialized



Python has a special syntax for accessing the last element in a
list. By asking for the item at index ‐1 , Python always returns
the last item in the list:

bicycles = ['trek', 'cannondale', 'redline', 'specialized']
print(bicycles[‐1])



This code returns the value 'specialized' . This syntax is quite
useful,because you’ll often want to access the last items in a list
without knowing exactly how long the list is. This convention
extends to other negative index values as well. The index ‐ 2
returns the second item from the end of the list, the index ‐ 3
returns the third item from the end, and so forth.



3.1.3 Using Individual Values from a List

You can use individual values from a list just as you would any
other variable. For example, you can use concatenation to
create a message based on a value from a list.
Let’s try pulling the first bicycle from the list and composing a
message using that value.

  bicycles = ['trek', 'cannondale', 'redline', 'specialized']
❶ message = "My first bicycle was a " + bicycles[0].title() + "."
  print(message)



At ❶, we build a sentence using the value at bicycles[0] and
store it in the variable message . The output is a simple
sentence about the first bicycle in the list:

My first bicycle was a Trek.



Try it yourself
3‐1 Names: Store the names of a few of your friends in a list
called names . Print each person’s name by accessing each
element in the list, one at a time .
3‐2 Greetings: Start with the list you used in Exercise 3‐1, but
instead of just printing each person’s name, print a message to
them . The text of each message should be the same, but each
message should be personalized with the person’s name .

3‐3 Your Own List: Think of your favorite mode of
transportation, such as a motorcycle or a car, and make a list
that stores several examples . Use your list to print a series of
statements about these items, such as “I would like to own a
Honda motorcycle .”



3.2 Changing, adding, and removing
elements

Most lists you create will be dynamic, meaning you’ll build a
list and then add and remove elements from it as your
program runs its course. For example, you might create a game
in which a player has to shoot aliens out of the sky. You could
store the initial set of aliens in a list and then remove an alien
from the list each time one is shot down. Each time a new alien
appears on the screen, you add it to the list. Your list of aliens
will decrease and increase in length throughout the course of
the game.



3.2.1 Modifying Elements in a List

The syntax for modifying an element is similar to the syntax for
accessing an element in a list. To change an element, use the
name of the list followed by the index of the element you want
to change, and then provide the new value you want that item
to have.
For example, let’s say we have a list of motorcycles, and the
first item in the list is 'honda' . How would we change the value
of this first item?

❶ motorcycles = ['honda', 'yamaha', 'suzuki']
  print(motorcycles)
❷ motorcycles[0] = 'ducati'
  print(motorcycles)



The code at ❶ defines the original list, with 'honda' as the first
element.The code at ❷ changes the value of the first item to
'ducati' . The output shows that the first item has indeed been
changed, and the rest of the list stays the same:

['honda', 'yamaha', 'suzuki']
['ducati', 'yamaha', 'suzuki']

You can change the value of any item in a list, not just the first
item.



3.2.2 Adding Elements to a List

You might want to add a new element to a list for many
reasons. For example, you might want to make new aliens
appear in a game, add new data to a visualization, or add new
registered users to a website you’ve built. Python provides
several ways to add new data to existing lists.



1. appending Elements to the End of a List

The simplest way to add a new element to a list is to append
the item to the list. When you append an item to a list, the new
element is added to the end of the list. Using the same list we
had in the previous example, we’ll add the new element
'ducati' to the end of the list:

  motorcycles = ['honda', 'yamaha', 'suzuki']
  print(motorcycles)
❶ motorcycles.append('ducati')
  print(motorcycles)
  



The append﴾﴿ method at ❶ adds 'ducati' to the end of the list
without
affecting any of the other elements in the list:

['honda', 'yamaha', 'suzuki']
['honda', 'yamaha', 'suzuki', 'ducati']

The append﴾﴿ method makes it easy to build lists dynamically.
For example, you can start with an empty list and then add
items to the list using a series of append﴾﴿ statements.



Using an empty list, let’s add the elements 'honda' , 'yamaha' ,
and 'suzuki' to the list:

motorcycles = []
motorcycles.append('honda')
motorcycles.append('yamaha')
motorcycles.append('suzuki')
print(motorcycles)



The resulting list looks exactly the same as the lists in the
previous examples:

['honda', 'yamaha', 'suzuki']



2. Inserting Elements into a List

You can add a new element at any position in your list by using
the insert﴾﴿ method. You do this by specifying the index of the
new element and the value of the new item.

  motorcycles = ['honda', 'yamaha', 'suzuki']
❶ motorcycles.insert(0, 'ducati')
  print(motorcycles)



In this example, the code at ❶ inserts the value 'ducati' at the
beginning of the list. The insert﴾﴿ method opens a space at
position 0 and stores the value 'ducati' at that location. This
operation shifts every other value in the list one position to the
right:

['ducati', 'honda', 'yamaha', 'suzuki']



3.2.3 Removing Elements from a List

Often, you’ll want to remove an item or a set of items from a
list. For example, when a player shoots down an alien from the
sky, you’ll most likely want to remove it from the list of active
aliens. Or when a user decides to cancel their account on a
web application you created, you’ll want to remove that user
from the list of active users. You can remove an item according
to its position in the list or according to its value.



1. Removing an Item Using the del Statement

If you know the position of the item you want to remove from
a list, you can use the del statement.

   motorcycles = ['honda', 'yamaha', 'suzuki']
   print(motorcycles)
 ❶ del motorcycles[0]
   print(motorcycles)
   

The code at ❶ uses del to remove the first item, 'honda' ,
from the list of motorcycles:

['honda', 'yamaha', 'suzuki']
['yamaha', 'suzuki']



You can remove an item from any position in a list using the
del statement if you know its index. For example, here’s how to
remove the second item, 'yamaha' , in the list:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles)
del motorcycles[1]
print(motorcycles)

The second motorcycle is deleted from the list:

['honda', 'yamaha', 'suzuki']
['honda', 'suzuki']



2. Removing an Item Using the pop﴾﴿ Method

Sometimes you’ll want to use the value of an item after you
remove it from a list. For example, you might want to get the x
and y position of an alien that was just shot down, so you can
draw an explosion at that position. In a web application, you
might want to remove a user from a list of active members and
then add that user to a list of inactive members.

The pop﴾﴿ method removes the last item in a list, but it lets you
work with that item after removing it. The term pop comes
from thinking of a list as a stack of items and popping one
item off the top of the stack. In this analogy, the top of a stack
corresponds to the end of a list.



Let’s pop a motorcycle from the list of motorcycles:

❶ motorcycles = ['honda', 'yamaha', 'suzuki']
   print(motorcycles)
❷ popped_motorcycle = motorcycles.pop()
❸ print(motorcycles)
❹ print(popped_motorcycle)

We start by defining and printing the list motorcycles at ❶. At
❷ we pop a value from the list and store that value in the
variable popped_motorcycle .We print the list at ❸ to show
that a value has been removed from the list. Then we print the
popped value at ❹ to prove that we still have access to the
value that was removed.



The output shows that the value 'suzuki' was removed from the
end of the list and is now stored in the variable
popped_motorcycle :

['honda', 'yamaha', 'suzuki']
['honda', 'yamaha']
suzuki



How might this pop﴾﴿ method be useful? Imagine that the
motorcycles in the list are stored in chronological order
according to when we owned them. If this is the case, we can
use the pop﴾﴿ method to print a statement about the last
motorcycle we bought:

motorcycles = ['honda', 'yamaha', 'suzuki']
last_owned = motorcycles.pop()
print("The last motorcycle I owned was a " + last_owned.title()+ 



The output is a simple sentence about the most recent
motorcycle we owned:

The last motorcycle I owned was a Suzuki.



3. Popping Items from any Position in a List

You can actually use pop﴾﴿ to remove an item in a list at any
position by including the index of the item you want to remove
in parentheses.

 ❶ motorcycles = ['honda', 'yamaha', 'suzuki']

 ❷ first_owned = motorcycles.pop(0)
   print('The first motorcycle I owned was a ' + first_owned.title() + 



We start by popping the first motorcycle in the list at ❶, and
then we print a message about that motorcycle at ❷. The
output is a simple sentence describing the first motorcycle I
ever owned:

The first motorcycle I owned was a Honda.



Remember that each time you use pop﴾﴿ , the item you work
with is no longer stored in the list.
If you’re unsure whether to use the del statement or the pop﴾﴿
method, here’s a simple way to decide: when you want to
delete an item from a list and not use that item in any way, use
the del statement; if you want to use an item as you remove it,
use the pop﴾﴿ method.



4. Removing an Item by Value

Sometimes you won’t know the position of the value you want
to remove from a list. If you only know the value of the item
you want to remove, you can use the remove﴾﴿ method.

For example, let’s say we want to remove the value 'ducati'
from the list of motorcycles.

  motorcycles = ['honda', 'yamaha', 'suzuki', 'ducati']
  print(motorcycles)
❶ motorcycles.remove('ducati')
  print(motorcycles)
  



The code at ❶ tells Python to figure out where 'ducati'
appears in the list and remove that element:

['honda', 'yamaha', 'suzuki', 'ducati']
['honda', 'yamaha', 'suzuki']



You can also use the remove﴾﴿ method to work with a value
that’s being removed from a list. Let’s remove the value 'ducati'
and print a reason for removing it from the list:

 ❶ motorcycles = ['honda','yamaha','suzuki','ducati']
   print(motorcycles)
 ❷ too_expensive = 'ducati'
 ❸ motorcycles.remove(too_expensive)
   print(motorcycles)
 ❹ print("\nA " + too_expensive.title() + " is too expensive for me."
 



After defining the list at ❶, we store the value 'ducati' in a
variable called too_expensive ❷. We then use this variable to
tell Python which value to remove from the list at ❸. At ❹
the value 'ducati' has been removed from the list but is still
stored in the variable too_expensive , allowing us to print a
statement about why we removed 'ducati' from the list of
motorcycles:

['honda', 'yamaha', 'suzuki', 'ducati']
['honda', 'yamaha', 'suzuki']
A Ducati is too expensive for me.

Note: The remove﴾﴿ method deletes only the first occurrence of
the value you specify.



Try It yourself
3‐4 Guest List: If you could invite anyone, living or deceased,
to dinner, who would you invite? Make a list that includes at
least three people you’d like to invite to dinner . Then use your
list to print a message to each person, inviting them to dinner .
3‐5 Changing Guest List: You just heard that one of your
guests can’t make the dinner, so you need to send out a new
set of invitations . You’ll have to think of someone else to
invite.

1. Start with your program from Exercise 3‐4 . Add a print
statement at the end of your program stating the name of the
guest who can’t make it.

2. Modify your list, replacing the name of the guest who can’t
make it with the name of the new person you are inviting .



3‐6 More Guests: You just found a bigger dinner table, so now
more space is available . Think of three more guests to invite to
dinner .

1. Start with your program from Exercise 3‐4 or Exercise 3‐5 . Add
a print statement to the end of your program informing people
that you found a bigger dinner table .

2. Use insert﴾﴿ to add one new guest to the beginning of your list.

3. Use insert﴾﴿ to add one new guest to the middle of your list .
4. Use append﴾﴿ to add one new guest to the end of your list .
5. Print a new set of invitation messages, one for each person in

your list .



3‐7 Shrinking Guest List: You just found out that your new
dinner table won’t arrive in time for the dinner, and you have
space for only two guests .

1. Start with your program from Exercise 3‐6 . Add a new line that
prints a message saying that you can invite only two people for
dinner .

2. Use pop﴾﴿ to remove guests from your list one at a time until
only two names remain in your list . Each time you pop a name
from your list, print a message to that person letting them
know you’re sorry you can’t invite them to dinner .

3. Print a message to each of the two people still on your list,
letting them know they’re still invited .

4. Use del to remove the last two names from your list, so you
have an empty list . Print your list to make sure you actually
have an empty list at the end of your program .



3.3 Organizing a List
Often, your lists will be created in an unpredictable order,
because you can’t always control the order in which your users
provide their data. Although this is unavoidable in most
circumstances, you’ll frequently want to present your
information in a particular order. Sometimes you’ll want to
preserve the original order of your list, and other times you’ll
want to change the original order. Python provides a number
of different ways to organize your lists,depending on the
situation.



3.3.1 Sorting a List Permanently with the sort﴾﴿
Method

Python’s sort﴾﴿ method makes it relatively easy to sort a list.
Imagine we have a list of cars and want to change the order of
the list to store them alphabetically. To keep the task simple,
let’s assume that all the values in the list are lowercase.

  cars = ['bmw', 'audi', 'toyota', 'subaru']
❶ cars.sort()
  print(cars)
  

The sort﴾﴿ method, shown at ❶, changes the order of the list
permanently. The cars are now in alphabetical order, and we
can never revert to the original order:

['audi', 'bmw', 'subaru', 'toyota']



You can also sort this list in reverse alphabetical order by
passing the argument reverse=True to the sort﴾﴿ method. The
following example sorts the list of cars in reverse alphabetical
order:

cars = ['bmw', 'audi', 'toyota', 'subaru']
cars.sort(reverse=True)
print(cars)

Again, the order of the list is permanently changed:

['toyota', 'subaru', 'bmw', 'audi']
 



3.3.2 Sorting a List Temporarily with the sorted﴾﴿
Function

To maintain the original order of a list but present it in a sorted
order, you can use the sorted﴾﴿ function. The sorted﴾﴿ function
lets you display your list in a particular order but doesn’t affect
the actual order of the list.
Let’s try this function on the list of cars.

  cars = ['bmw', 'audi', 'toyota', 'subaru']
❶ print("Here is the original list:")
  print(cars)
❷ print("\nHere is the sorted list:")
  print(sorted(cars))
❸ print("\nHere is the original list again:")
  print(cars)



We first print the list in its original order at ❶ and then in
alphabetical order at ❷. After the list is displayed in the new
order, we show that the list is still stored in its original order at
❸.

  Here is the original list:
  ['bmw', 'audi', 'toyota', 'subaru']
  Here is the sorted list:
  ['audi', 'bmw', 'subaru', 'toyota']
❹ Here is the original list again:
  ['bmw', 'audi', 'toyota', 'subaru']
  



Notice:

that the list still exists in its original order at x after the sorted﴾﴿
function has been used. The sorted﴾﴿ function can also accept a
reverse=True argument if you want to display a list in reverse
alphabetical order.
Sorting a list alphabetically is a bit more complicated when all
the values are not in lowercase. There are several ways to
interpret capital letters when you’re deciding on a sort order,
and specifying the exact order can be more complex than we
want to deal with at this time. However, most approaches to
sorting will build directly on what you learned in this section.



3.3.3 Printing a List in Reverse Order

To reverse the original order of a list, you can use the reverse﴾﴿
method.If we originally stored the list of cars in chronological
order according to when we owned them, we could easily
rearrange the list into reverse chronological order:

cars = ['bmw', 'audi', 'toyota', 'subaru']
print(cars)
cars.reverse()
print(cars)



Notice that reverse﴾﴿ doesn’t sort backward alphabetically; it simply
reverses the order of the list:

['bmw', 'audi', 'toyota', 'subaru']
['subaru', 'toyota', 'audi', 'bmw']

The reverse﴾﴿ method changes the order of a list permanently,
but you can revert to the original order anytime by applying
reverse﴾﴿ to the same list a second time.



3.3.4 Finding the Length of a List

You can quickly find the length of a list by using the len﴾﴿
function. The list in this example has four items, so its length is
4 :

>>> cars = ['bmw', 'audi', 'toyota', 'subaru']
>>> len(cars)
4

You’ll find len﴾﴿ useful when you need to identify the number of
aliens that still need to be shot down in a game, determine the
amount of data you have to manage in a visualization, or
figure out the number of registered users on a website, among
other tasks.

Note: Python counts the items in a list starting with one, so you
shouldn’t run into any off‐by‐one errors when determining the
length of a list.



Try It yourself
3‐8 Seeing the World: Think of at least five places in the
world you’d like to visit .

Store the locations in a list . Make sure the list is not in
alphabetical order .

Print your list in its original order . Don’t worry about printing
the list neatly,just print it as a raw Python list .
Use sorted﴾﴿ to print your list in alphabetical order without
modifying the actual list .
Show that your list is still in its original order by printing it .
Use sorted﴾﴿ to print your list in reverse alphabetical order
without changing the order of the original list .



Show that your list is still in its original order by printing it
again .
Use reverse﴾﴿ to change the order of your list . Print the list to
show that its order has changed .

Use reverse﴾﴿ to change the order of your list again . Print the
list to show it’s back to its original order .
Use sort﴾﴿ to change your list so it’s stored in alphabetical order
. Print the list to show that its order has been changed .
Use sort﴾﴿ to change your list so it’s stored in reverse
alphabetical order .Print the list to show that its order has
changed .



3‐9 Dinner Guests: Working with one of the programs from
Exercises 3‐4 through 3‐7 ﴾page 46﴿, use len﴾﴿ to print a
message indicating the number of people you are inviting to
dinner .
3‐10 Every Function: Think of something you could store in a
list . For example, you could make a list of mountains, rivers,
countries, cities, languages, or anything else you’d like . Write a
program that creates a list containing these items and then
uses each function introduced in this chapter at least once .



3.4 Avoiding Index errors when working with lists

One type of error is common to see when you’re working with
lists for the first time. Let’s say you have a list with three items,
and you ask for the fourth item:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles[3])

This example results in an index error:

Traceback (most recent call last):
File "motorcycles.py", line 3, in <module>
print(motorcycles[3])
IndexError: list index out of range



Python attempts to give you the item at index 3. But when it
searches the list, no item in motorcycles has an index of 3.
Because of the off‐by‐one nature of indexing in lists, this error
is typical. People think the third item is item number 3, because
they start counting at 1. But in Python the third item is number
2, because it starts indexing at 0.

An index error means Python can’t figure out the index you
requested. If an index error occurs in your program, try
adjusting the index you’re asking for by one. Then run the
program again to see if the results are correct.



Keep in mind that whenever you want to access the last item in
a list you use the index ‐1 . This will always work, even if your
list has changed size since the last time you accessed it:

motorcycles = ['honda', 'yamaha', 'suzuki']
print(motorcycles[‐1])

The index ‐1 always returns the last item in a list, in this case
the value 'suzuki' :

'suzuki'



The only time this approach will cause an error is when you
request the last item from an empty list:

motorcycles = []
print(motorcycles[‐1])

No items are in motorcycles , so Python returns another index
error:

Traceback (most recent call last):
File "motorcyles.py", line 3, in <module>
print(motorcycles[‐1])
IndexError: list index out of range

Note:If an index error occurs and you can’t figure out how to
resolve it, try printing your list or just printing the length of
your list. Your list might look much different than you thought
it did, especially if it has been managed dynamically by your
program.Seeing the actual list, or the exact number of items in
your list, can help you sort out such logical errors.



Try It yourself
3‐11 Intentional Error: If you haven’t received an index error in
one of your programs yet, try to make one happen . Change an
index in one of your programs to produce an index error .
Make sure you correct the error before closing the program .



3.5 Summary
In this chapter you learned what lists are and how to work with
the individual items in a list. You learned how to define a list
and how to add and remove elements. You learned to sort lists
permanently and temporarily for display purposes. You also
learned how to find the length of a list and how to avoid index
errors when you’re working with lists.
In Chapter 4 you’ll learn how to work with items in a list more
efficiently. By looping through each item in a list using just a
few lines of code you’ll be able to work efficiently, even when
your list contains thousands or millions of items.


