
Chapter 6 Dictionaries

6.1 A Simple Dictionary

6.2 Working with Dictionaries

6.3 Looping Through a Dictionary

6.4 Nesting

6.5 Summary

1

6.1 A Simple Dictionary

This simple dictionary stores information about a particular alien:

alien_0 = {'color': 'green', 'points': 5}
print(alien_0['color'])
print(alien_0['points'])

The dictionary alien_0 stores the alien’s color and point value. The two print statements
access and display that information, as shown here:

green
5

2

6.2 Working with Dictionaries

A dictionary in Python is a collection of key-value pairs.
In Python, a dictionary is wrapped in braces, {}, with a series of key-value pairs inside
the braces, as shown in the earlier example:

alien_0 = {'color': 'green', 'points': 5}

You can store as many key-value pairs as you want in a dictionary.
The simplest dictionary has exactly one key-value pair, as shown in this modified
version of the alien_0 dictionary:

alien_0 = {'color': 'green'}

3

6.2.1 Accessing Values in a Dictionary

To get the value associated with a key, give the name of the dictionary and then place
the key inside a set of square brackets, as shown here:

alien_0 = {'color': 'green'}
print(alien_0['color'])

This returns the value associated with the key 'color' from the dictionary alien_0 :

green

4

You can have an unlimited number of key-value pairs in a dictionary.
For example, here’s the original alien_0 dictionary with two key-value pairs:

alien_0 = {'color': 'green', 'points': 5}

Now you can access either the color or the point value of alien_0 . If a player shoots
down this alien, you can look up how many points they should earn using code like this:

alien_0 = {'color': 'green', 'points': 5}
❶ new_points = alien_0['points']
❷ print("You just earned " + str(new_points) + " points!")

5

Once the dictionary has been defined, the code at ❶ pulls the value associated with
the key 'points' from the dictionary. This value is then stored in the variable new_points.
The line at ❷ converts this integer value to a string and prints a statement about how
many points the player just earned:

You just earned 5 points!

6

6.2.2 Adding New Key-Value Pairs

Dictionaries are dynamic structures, and you can add new key-value pairs to a
dictionary at any time. For example, to add a new key-value pair, you would give the
name of the dictionary followed by the new key in square brackets along with the new
value.

7

Let’s add two new pieces of information to the alien_0 dictionary: the alien’s x- and y-
coordinates, which will help us display the alien in a particular position on the screen.
Let’s place the alien on the left edge of the screen, 25 pixels down from the top.
Because screen coordinates usually start at the upper-left corner of the screen, we’ll
place the alien on the left edge of the screen by setting the x-coordinate to 0 and 25
pixels from the top by setting its y-coordinate to positive 25, as shown here:

alien_0 = {'color': 'green', 'points': 5}
print(alien_0)
❶ alien_0['x_position'] = 0
❷ alien_0['y_position'] = 25
print(alien_0)

8

At ❶ we add a new key-value pair to the dictionary: key 'x_position' and value 0 .
We do the same for key 'y_position' at ❷. When we print the modified dictionary,
we see the two additional key-value pairs:

{'color': 'green', 'points': 5}
{'color': 'green', 'points': 5, 'y_position': 25, 'x_position': 0}

9

6.2.3 Starting with an Empty Dictionary

It’s sometimes convenient, or even necessary, to start with an empty dictionary and
then add each new item to it. To start filling an empty dictionary, define a dictionary
with an empty set of braces and then add each key-value pair on its own line. For
example, here’s how to build the alien_0 dictionary using this approach:

alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5
print(alien_0)

10

Here we define an empty alien_0 dictionary, and then add color and point values to it.
The result is the dictionary we’ve been using in previous examples:

{'color': 'green', 'points': 5}

11

6.2.4 Modifying Values in a Dictionary

To modify a value in a dictionary, give the name of the dictionary with the key in square
brackets and then the new value you want associated with that key. For example,
consider an alien that changes from green to yellow as a game progresses:

alien_0 = {'color': 'green'}
print("The alien is " + alien_0['color'] + ".")
alien_0['color'] = 'yellow'
print("The alien is now " + alien_0['color'] + ".")

12

We first define a dictionary for alien_0 that contains only the alien’s color; then we
change the value associated with the key 'color' to 'yellow' . The output shows that
the alien has indeed changed from green to yellow:

The alien is green.
The alien is now yellow.

13

For a more interesting example, let’s track the position of an alien that can move at
different speeds. We’ll store a value representing the alien’s current speed and then use
it to determine how far to the right the alien should move:

alien_0 = {'x_position': 0, 'y_position': 25, \
'speed': 'medium'}
print("Original x-position: " + str(alien_0['x_position']))
Move the alien to the right.
Determine how far to move the alien based on its current speed.
❶if alien_0['speed'] == 'slow':
 x_increment = 1
 elif alien_0['speed'] == 'medium':
 x_increment = 2
 else:
 # This must be a fast alien.
 x_increment = 3
The new position is the old position plus the increment.
❷alien_0['x_position'] = alien_0['x_position'] + x_increment
print("New x-position: " + str(alien_0['x_position']))

14

Because this is a medium-speed alien, its position shifts two units to the right:

Original x-position: 0
New x-position: 2

This technique is pretty cool: by changing one value in the alien’s dictionary, you can
change the overall behavior of the alien. For example, to turn this medium-speed alien
into a fast alien, you would add the line:

alien_0['speed'] = 'fast'

15

6.2.5 Removing Key-Value Pairs

When you no longer need a piece of information that’s stored in a dictionary, you can
use the del statement to completely remove a key-value pair. All del needs is the
name of the dictionary and the key that you want to remove.
For example, let’s remove the key 'points' from the alien_0 dictionary along with its
value:

alien_0 = {'color': 'green', 'points': 5}
print(alien_0)
❶ del alien_0['points']
print(alien_0)

16

The line at ❶ tells Python to delete the key 'points' from the dictionary alien_0
and to remove the value associated with that key as well. The output shows that the key
'points' and its value of 5 are deleted from the dictionary, but the rest of the

dictionary is unaffected:

{'color': 'green', 'points': 5}
{'color': 'green'}

Note: Be aware that the deleted key-value pair is removed permanently.

17

6.2.6 A Dictionary of Similar Objects

The previous example involved storing different kinds of information about one object,
an alien in a game. You can also use a dictionary to store one kind of information about
many objects. For example, say you want to poll a number of people and ask them
what their favorite programming language is. A dictionary is useful for storing the
results of a simple poll, like this:

favorite_languages = {
'jen': 'python',
'sarah': 'c',
'edward': 'ruby',
'phil': 'python',
}

18

Once you’ve finished defining the dictionary, add a closing brace on a new line after the
last key-value pair and indent it one level so it aligns with the keys in the dictionary. It’s
good practice to include a comma after the last key-value pair as well, so you’re ready
to add a new key-value pair on the next line.

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }

❶print("Sarah's favorite language is " +
❷ favorite_languages['sarah'].title() +
❸ ".")

19

To see which language Sarah chose, we ask for the value at:

favorite_languages['sarah']

This syntax is used in the print statement at ❷, and the output shows Sarah’s
favorite language:

Sarah's favorite language is C.

20

This example also shows how you can break up a long print statement over several
lines. The word print is shorter than most dictionary names, so it makes sense to
include the first part of what you want to print right after the opening parenthesis ❶.
Choose an appropriate point at which to break what’s being printed, and add a
concatenation operator (+) at the end of the first line ❷. Press ENTER and then press
TAB to align all subsequent lines at one indentation level under the print statement.
When you’ve finished composing your output, you can place the closing parenthesis on
the last line of the print block ❸.

21

6.3 Looping Through a Dictionary

A single Python dictionary can contain just a few key-value pairs or millions of pairs.
Because a dictionary can contain large amounts of data, Python lets you loop through a
dictionary. Dictionaries can be used to store information in a variety of ways; therefore,
several different ways exist to loop through them. You can loop through all of a
dictionary’s key-value pairs, through its keys, or through its values.

22

6.3.1 Looping Through All Key-Value Pairs

Before we explore the different approaches to looping, let’s consider a new dictionary
designed to store information about a user on a website.
The following dictionary would store one person’s username, first name, and last name:

user_0 = {
 'username': 'efermi',
 'first': 'enrico',
 'last': 'fermi',
 }

23

You can access any single piece of information about user_0 based on what you’ve
already learned in this chapter. But what if you wanted to see everything stored in this
user’s dictionary? To do so, you could loop through the dictionary using a for loop:

user_0 = {
 'username': 'efermi',
 'first': 'enrico',
 'last': 'fermi',
 }
❶ for key, value in user_0.items():
❷ print("\nKey: " + key)
❸ print("Value: " + value)

24

As shown at ❶, to write a for loop for a dictionary, you create names for the two
variables that will hold the key and value in each key-value pair. You can choose any
names you want for these two variables. This code would work just as well if you had
used abbreviations for the variable names, like this:

for k, v in user_0.items()

25

The "\n" in the first print statement ensures that a blank line is inserted before each
key-value pair in the output:

Key: last
Value: fermi

Key: first
Value: enrico

Key: username
Value: efermi

26

Looping through all key-value pairs works particularly well for dictionaries like the
favorite_languages.py example on 6.2.6, which stores the same kind of information for
many different keys. If you loop through the favorite_languages dictionary, you get
the name of each person in the dictionary and their favorite programming language.
Because the keys always refer to a person’s name and the value is always a language,
we’ll use the variables name and language in the loop instead of key and value . This
will make it easier to follow what’s happening inside the loop:

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }
❶ for name, language in favorite_languages.items():
❷ print(name.title() + "'s favorite language is " +
 language.title() + ".")

27

Now, in just a few lines of code, we can display all of the information from the poll:

Jen's favorite language is Python.
Sarah's favorite language is C.
Phil's favorite language is Python.
Edward's favorite language is Ruby.

28

6.3.2 Looping Through All the Keys in a Dictionary

The keys() method is useful when you don’t need to work with all of the values in a
dictionary. Let’s loop through the favorite_languages dictionary and print the names
of everyone who took the poll:

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }
❶ for name in favorite_languages.keys():
 print(name.title())

29

The line at ❶ tells Python to pull all the keys from the dictionary favorite_languages
and store them one at a time in the variable name. The output shows the names of
everyone who took the poll:

Jen
Sarah
Phil
Edward

Looping through the keys is actually the default behavior when looping through a
dictionary, so this code would have exactly the same output if you wrote . . .

for name in favorite_languages:

rather than...

for name in favorite_languages.keys():

30

You can access the value associated with any key you care about inside the loop by
using the current key. Let’s print a message to a couple of friends about the languages
they chose. We’ll loop through the names in the dictionary as we did previously, but
when the name matches one of our friends, we’ll display a message about their favorite
language:

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }
❶ friends = ['phil', 'sarah']
for name in favorite_languages.keys():
 print(name.title())

❷ if name in friends:
 print(" Hi " + name.title() +
 ", I see your favorite language is " +
❸ favorite_languages[name].title() + "!")

31

At ❶ we make a list of friends that we want to print a message to. Inside the loop, we
print each person’s name. Then at ❷ we check to see whether the name we are
working with is in the list friends. If it is, we print a special greeting, including a
reference to their language choice. To access the favorite language at ❸, we use the
name of the dictionary and the current value of name as the key. Everyone’s name is
printed, but our friends receive a special message:

Edward
Phil
 Hi Phil, I see your favorite language is Python!
Sarah
 Hi Sarah, I see your favorite language is C!
Jen

32

You can also use the keys() method to find out if a particular person was polled. This
time, let’s find out if Erin took the poll:

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }
❶ if 'erin' not in favorite_languages.keys():
 print("Erin, please take our poll!")

33

The keys() method isn’t just for looping: It actually returns a list of all the keys, and
the line at ❶ simply checks if 'erin' is in this list. Because she’s not, a message is
printed inviting her to take the poll:

Erin, please take our poll!

34

6.3.4 Looping Through All Values in a Dictionary

If you are primarily interested in the values that a dictionary contains, you can use the
values() method to return a list of values without any keys. For example, say we

simply want a list of all languages chosen in our programming language poll without
the name of the person who chose each language:

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }
print("The following languages have been mentioned:")
for language in favorite_languages.values():
 print(language.title())

35

The for statement here pulls each value from the dictionary and stores it in the
variable language. When these values are printed, we get a list of all chosen languages:

The following languages have been mentioned:
Python
C
Python
Ruby

36

This approach pulls all the values from the dictionary without checking for repeats. That
might work fine with a small number of values, but in a poll with a large number of
respondents, this would result in a very repetitive list. To see each language chosen
without repetition, we can use a set.
A set is similar to a list except that each item in the set must be unique:

favorite_languages = {
 'jen': 'python',
 'sarah': 'c',
 'edward': 'ruby',
 'phil': 'python',
 }
print("The following languages have been mentioned:")
❶ for language in set(favorite_languages.values()):
 print(language.title())

37

When you wrap set() around a list that contains duplicate items, Python identifies the
unique items in the list and builds a set from those items. At ❶ we use set() to pull
out the unique languages in favorite_languages .values().
The result is a nonrepetitive list of languages that have been mentioned by people
taking the poll:

The following languages have been mentioned:
Python
C
Ruby

38

6.4 Nesting

Sometimes you’ll want to store a set of dictionaries in a list or a list of items as a value
in a dictionary. This is called nesting. You can nest a set of dictionaries inside a list, a list
of items inside a dictionary, or even a dictionary inside another dictionary. Nesting is a
powerful feature, as the following examples will demonstrate.

39

6.4.1 A List of Dictionaries

The alien_0 dictionary contains a variety of information about one alien, but it has no
room to store information about a second alien, much less a screen full of aliens. How
can you manage a fleet of aliens? One way is to make a list of aliens in which each alien
is a dictionary of information about that alien. For example, the following code builds a
list of three aliens:

alien_0 = {'color': 'green', 'points': 5}
alien_1 = {'color': 'yellow', 'points': 10}
alien_2 = {'color': 'red', 'points': 15}

❶ aliens = [alien_0, alien_1, alien_2]

for alien in aliens:
print(alien)

40

We first create three dictionaries, each representing a different alien. At ❶ we pack
each of these dictionaries into a list called aliens. Finally, we loop through the list and
print out each alien:

{'color': 'green', 'points': 5}
{'color': 'yellow', 'points': 10}
{'color': 'red', 'points': 15}

41

A more realistic example would involve more than three aliens with code that
automatically generates each alien. In the following example we use range() to create
a fleet of 30 aliens:

Make an empty list for storing aliens.
aliens = []

Make 30 green aliens.
❶ for alien_number in range(30):
❷ new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'}
❸ aliens.append(new_alien)
Show the first 5 aliens:
❹ for alien in aliens[:5]:
 print(alien)
print("...")
Show how many aliens have been created.
❺ print("Total number of aliens: " + str(len(aliens)))

42

This example begins with an empty list to hold all of the aliens that will be created. At
❶ range() returns a set of numbers, which just tells Python how many times we want
the loop to repeat. Each time the loop runs we create a new alien ❷ and then append
each new alien to the list aliens ❸. At ❹ we use a slice to print the first five aliens,
and then at ❺ we print the length of the list to prove we’ve actually generated the full
fleet of 30 aliens:

{'speed':'slow','color':'green','points':5}
{'speed':'slow','color':'green','points':5}
{'speed':'slow','color':'green','points':5}
{'speed':'slow','color':'green','points':5}
{'speed':'slow','color':'green','points':5}
...
Total number of aliens: 30

43

How might you work with a set of aliens like this? Imagine that one aspect of a game
has some aliens changing color and moving faster as the game progresses. When it’s
time to change colors, we can use a for loop and an if statement to change the
color of aliens. For example, to change the first three aliens to yellow, medium-speed
aliens worth 10 points each, we could do this:

44

Make an empty list for storing aliens.
aliens = []
Make 30 green aliens.
for alien_number in range (0,30):
 new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'}
 aliens.append(new_alien)
for alien in aliens[0:3]:
 if alien['color'] == 'green':
 alien['color'] = 'yellow'
 alien['speed'] = 'medium'
 alien['points'] = 10
Show the first 5 aliens:
for alien in aliens[0:5]:
 print(alien)
print("...")

45

Because we want to modify the first three aliens, we loop through a slice that includes
only the first three aliens. All of the aliens are green now but that won’t always be the
case, so we write an if statement to make sure we’re only modifying green aliens. If
the alien is green, we change the color to 'yellow' , the speed to 'medium' , and the
point value to 10, as shown in the following output:

{'speed':'slow','color':'green','points':10}
{'speed':'slow','color':'green','points':10}
{'speed':'slow','color':'green','points':10}
{'speed':'slow','color':'green','points':5}
{'speed':'slow','color':'green','points':5}
...

46

You could expand this loop by adding an elif block that turns yellow aliens into red,
fast-moving ones worth 15 points each. Without showing the entire program again,
that loop would look like this:

for alien in aliens[0:3]:
 if alien['color'] == 'green':
 alien['color'] = 'yellow'
 alien['speed'] = 'medium'
 alien['points'] = 10
 elif alien['color'] == 'yellow':
 alien['color'] = 'red'
 alien['speed'] = 'fast'
 alien['points'] = 15

47

6.4.2 A List in a Dictionary

In the following example, two kinds of information are stored for each pizza: a type of
crust and a list of toppings. The list of toppings is a value associated with the key
'toppings' . To use the items in the list, we give the name of the dictionary and the key
'toppings' , as we would any value in the dictionary. Instead of returning a single

value, we get a list of toppings:

Store information about a pizza being ordered.
pizza = {
 'crust': 'thick',
 'toppings': ['mushrooms', 'extra cheese'],
 }
Summarize the order.
print("You ordered a " + pizza['crust'] + "-crust pizza " +
 "with the following toppings:")

for topping in pizza['toppings']:
 print("\t" + topping)

48

The following output summarizes the pizza that we plan to build:

You ordered a thick-crust pizza with the following toppings:
 mushrooms
 extra cheese

49

You can nest a list inside a dictionary any time you want more than one value to be
associated with a single key in a dictionary. In the earlier example of favorite
programming languages, if we were to store each person’s responses in a list, people
could choose more than one favorite language. When we loop through the dictionary,
the value associated with each person would be a list of languages rather than a single
language. Inside the dictionary’s for loop, we use another for loop to run through
the list of languages associated with each person:

❶ favorite_languages = {
 'jen': ['python', 'ruby'],
 'sarah': ['c'],
 'edward': ['ruby', 'go'],
 'phil': ['python', 'haskell'],
 }
❷ for name, languages in favorite_languages.items():
 print("\n" + name.title() + "'s favorite languages are:")
❸ for language in languages:
 print("\t" + language.title())

50

As you can see at ❶ the value associated with each name is now a list. Notice that
some people have one favorite language and others have multiple favorites. When we
loop through the dictionary at ❷, we use the variable name languages to hold each
value from the dictionary, because we know that each value will be a list. Inside the
main dictionary loop, we use another for loop ❸ to run through each person’s list of
favorite languages. Now each person can list as many favorite languages as they like:

Jen's favorite languages are:
 Python
 Ruby
Sarah's favorite languages are:
 C
Phil's favorite languages are:
 Python
 Haskell
Edward's favorite languages are:
 Ruby
 Go

51

6.4.3 A Dictionary in a Dictionary

You can nest a dictionary inside another dictionary, but your code can get complicated
quickly when you do. For example, if you have several users for a website, each with a
unique username, you can use the usernames as the keys in a dictionary. You can then
store information about each user by using a dictionary as the value associated with
their username. In the following listing, we store three pieces of information about each
user: their first name, last name, and location. We’ll access this information by looping
through the usernames and the dictionary of information associated with each
username:

52

users = {
 'aeinstein': {
 'first': 'albert',
 'last': 'einstein',
 'location': 'princeton',
 },
 'mcurie': {
 'first': 'marie',
 'last': 'curie',
 'location': 'paris',
 },
 }

❶ for username, user_info in users.items():
❷ print("\nUsername: " + username)
❸ full_name = user_info['first'] + " " + user_info['last']
 location = user_info['location']
❹ print("\tFull name: " + full_name.title())
 print("\tLocation: " + location.title())

53

At ❸ we start accessing the inner dictionary. The variable user_info , which contains
the dictionary of user information, has three keys: 'first' , 'last' , and 'location' .
We use each key to generate a neatly formatted full name and location for each person,
and then print a summary of what we know about each user ❹:

Username: aeinstein
 Full name: Albert Einstein
 Location: Princeton
Username: mcurie
 Full name: Marie Curie
 Location: Paris

54

6.5 Summary

In this chapter you learned how to define a dictionary and how to work with the
information stored in a dictionary. You learned how to access and modify individual
elements in a dictionary, and how to loop through all of the information in a dictionary.
You learned to loop through a dictionary’s key-value pairs, its keys, and its values. You
also learned how to nest multiple dictionaries in a list, nest lists in a dictionary, and nest
a dictionary inside a dictionary.
In the next chapter you’ll learn about while loops and how to accept input from
people who are using your programs. This will be an exciting chapter, because you’ll
learn to make all of your programs interactive: they’ll be able to respond to user input.

55

